DOT POINT

WACE PHYSICS UNITS 1 AND 2

© Science Press 2016 First published 2016

Science Press Private Bag 7023 Marrickville NSW 1475 Australia Tel: +61 2 9516 1122 Fax: +61 2 9550 1915 sales@sciencepress.com.au www.sciencepress.com.au All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Science Press. ABN 98 000 073 861

Contents

Words to Watch	iv
Introduction	v
Dot Points	
Thermal, Nuclear and Electrical Physics	vi
Linear Motion and Waves	xi
Questions	
Thermal, Nuclear and Electrical Physics	1
Linear Motion and Waves	149
Answers	
Thermal, Nuclear and Electrical Physics	301
Linear Motion and Waves	349
Appendices	
Data Sheet	405
Equations	406
Periodic Table	408
Index	409

Words to Watch

account, account for State reasons for, report on, give an account of, narrate a series of events or transactions.

analyse Interpret data to reach conclusions.

annotate Add brief notes to a diagram or graph.

apply Put to use in a particular situation.

assess Make a judgement about the value of something.

calculate Find a numerical answer.

clarify Make clear or plain.

classify Arrange into classes, groups or categories.

comment Give a judgement based on a given statement or result of a calculation.

compare Estimate, measure or note how things are similar or different.

construct Represent or develop in graphical form.

contrast Show how things are different or opposite.

create Originate or bring into existence.

deduce Reach a conclusion from given information.

define Give the precise meaning of a word, phrase or physical quantity.

demonstrate Show by example.

derive Manipulate a mathematical relationship(s) to give a new equation or relationship.

describe Give a detailed account.

design Produce a plan, simulation or model.

determine Find the only possible answer.

discuss Talk or write about a topic, taking into account different issues or ideas.

distinguish Give differences between two or more different items.

draw Represent by means of pencil lines.

estimate Find an approximate value for an unknown quantity.

evaluate Assess the implications and limitations.

examine Inquire into.

explain Make something clear or easy to understand.

extract Choose relevant and/or appropriate details.

extrapolate Infer from what is known.

hypothesise Suggest an explanation for a group of facts or phenomena.

identify Recognise and name.

interpret Draw meaning from.

investigate Plan, inquire into and draw conclusions about.

justify Support an argument or conclusion.

label Add labels to a diagram.

list Give a sequence of names or other brief answers.

measure Find a value for a quantity.

outline Give a brief account or summary.

plan Use strategies to develop a series of steps or processes.

predict Give an expected result.

propose Put forward a plan or suggestion for consideration or action.

recall Present remembered ideas, facts or experiences.

relate Tell or report about happenings, events or circumstances.

represent Use words, images or symbols to convey meaning.

select Choose in preference to another or others.

sequence Arrange in order.

show Give the steps in a calculation or derivation.

sketch Make a quick, rough drawing of something.

solve Work out the answer to a problem.

state Give a specific name, value or other brief answer.

suggest Put forward an idea for consideration.

summarise Give a brief statement of the main points.

synthesise Combine various elements to make a whole.

Introduction

What the book includes

This book provides questions and answers for each dot point in the syllabus for WACE Physics Units 1 and 2:

Unit 1 Thermal, Nuclear and Electrical Physics

- Topic 1 Heating Processes
- Topic 2 Ionising Radiation and Nuclear Reactions
- Topic 3 Electrical Circuits

Unit 2 Linear Motion and Waves

- Topic 1 Linear Motion and Force
- Topic 2 Waves

Format of the book

The book has been formatted in the following way:

1.1 Subtopic from syllabus.

1.1.1 Assessment statement from syllabus.

- 1.1.1.1 First question for this assessment statement.
- **1.1.1.2** Second question for this assessment statement.

The number of lines provided for each answer gives an indication of how many marks the question might be worth in an examination. As a rough rule, every two lines of answer might be worth 1 mark.

How to use the book

Completing all questions will provide you with a summary of all the work you need to know from the syllabus. You may have done work in addition to this with your teacher as extension work. Obviously this is not covered, but you may need to know this additional work for your school exams.

When working through the questions, write the answers you have to look up in a different colour to those you know without having to research the work. This will provide you with a quick reference for work needing further revision.

Dot Point		Page	je Dot Point		Page	
Торіс	1 Heating Processes		1.3	Heat transfer by conduction, convection and/or radiation	22	
1.1	The kinetic particle model, internal thermal energy and	5		Heat transfer occurs between and wi systems by conduction, convection a radiation.	thin and/or	
	temperature		1.3.1	Heat conduction.	22	
	The kinetic particle model describes n	natter	1.3.2	Heat convection.	24	
	motion, except at absolute zero.		1.3.3	Heat radiation.	26	
	All systems have internal thermal energy due to motion of particles in the system.		1.4	Transferring energy, and thermal equilibrium	27	
	Temperature is a measure of the avera kinetic energy of the particles in a sys	age tem.		Two systems in contact transfer ener- between the particles so that eventual	energy	
1.1.1	The kinetic theory of matter.	5		the systems reach the same tempera	ture,	
1.1.2	Kinetic theory and properties of matter.	6	1.4.1	Transferring heat energy 2.	ı. 27	
1.1.3	Temperature and the kinetic theory.	8	15	Thermal operaty mechanical	20	
1.1.4	Changes of state and the kinetic theory.	10	1.5	work, energy transfers and transformations	29	
1.2	Temperature change, heat12A system with thermcapacity, change of stateapply a force over aand latent heatis done the internal 6		A system with thermal energy has the capacity to do mechanical work (that apply a force over a distance); when is done the internal energy of the sys	al energy has the anical work (that is, to distance); when work energy of the system		
	Provided a substance does not change state, its temperature change is proportional to the amount of energy added to or removed from the substan	je nce;		changes. Because energy is conserved, the ch in internal energy of a system is equa	ange Il to	
	the constant of proportionality describ the heat capacity of the substance.	bes		plus the work done on or by the syste	am.	
	Change of state involves internal energy changes to form or break bonds betwee atoms or molecules; latent heat is the e required to be added to or removed from system to change the state of the system	y en nergy m a m.		Energy transfers and transformations in mechanical systems (for example, inter and external combustion engines, elec motors) always result in the production thermal energy, so that the usable ener reduced and the system cannot be 100	ons in internal electric ction of energy is	
1.2.1	Changes of state and latent energy 1.	12	1 5 1	efficient.	,,,,	
1.2.2	Analysing a temperature change experiment.	15	1.3.1	work done and internal heat energy.	29	
1.2.3	Changes of state and latent energy 2.	17				
1.2.4	Transferring heat energy 1.	19				

Dot Po	int	Page	Dot Po	int	Page		
1.6	Science as a global enterprise, developing models and theories	33	Торіс	2 Ionising Radiation and Nuclear Reactions			
	Science is a global enterprise that relies on clear communication, international conventions, peer review and reproducil	oility.	2.1	The nuclear model of the atom,	41		
Development of complex models or theories often requires a wide r of evidence from multiple individu across disciplines.		/ e and		The nuclear model of the atom descri the atom as consisting of an extreme nucleus which contains most of the a	bes y small tom's		
	Advances in science understanding ir field can influence other areas of scie technology and engineering.	n one nce,		mass and is made up of positively ch protons and uncharged neutrons surr by negatively charged electrons.	ly charged surrounded		
1.6.1	Development of thermodynamics.	33		Models and theories are contested a refined or replaced when new evide	and		
1.6.2	The internal combustion engine.	34		challenges them, or when a new mo theory has greater explanatory pow	odel or er.		
1.7	The use of scientific knowledge	36	2.1.1	Models of the atom 1.	41		
	The use of scientific knowledge is influenced by social, economic, cultural and ethical considerations		2.1.2	Models of the atom 2.	42		
	Scientific knowledge can enable scient to offer valid explanations and make reliable predictions.	c knowledge can enable scientists valid explanations and make predictions.		2.2 itists		Nuclear stability Nuclear stability is the result of the s nuclear force between nucleons, whi operates over a very short distance	
	Scientific knowledge can be used to develop and evaluate projected econ	omic,		and opposes the electrostatic repuls between protons in the nucleus.	sion		
	design action for sustainability.	1 10	2.2.1	The strong nuclear force.	44		
1.7.1	The energy balance of Earth.	36	2.3	Nuclides and decay	45		
1.7.2	Energy sustainability.	38		Some nuclides are unstable and spontaneously decay, emitting alpha and/or gamma radiation over time u they become stable nuclides.	a, beta ntil		
			2.3.1	Isotopes.	45		
			2.3.2	Nuclear decay.	46		
			2.3.3	Stability of nuclides.	49		
			2.3.4	Properties of radioactive particles.	51		
			2.3.5	Writing equations for nuclear decay reactions.	53		

Science Press

Dot Point Page Dot Point		Dint I	Page		
2.4	Nuclides and half-life	55	2.9	Neutron induced nuclear fission	67
	Each species of nuclide has a specific half-life.			Neutron induced nuclear fission is a reaction in which a heavy nuclide cap	tures
2.4.1 2.4.2	Half-life of nuclides. Analysing a half-life experiment.	55 57		a neutron and then splits into two sma radioactive nuclides, with the release	aller of
2.5	Advances in science understanding,	58	2.9.1	Neutron induced fission.	67
	ICT and technology		2.10	Fission chain reactions	69
	Advances in science understanding in or field can influence other areas of science technology and engineering. Scientific knowledge can enable scientists to offer explanations and make reliable prediction	ne e, valid ns.		A fission chain reaction is a self-susta process that may be controlled to slow produce thermal energy, or uncontrolle rapidly release energy explosively.	ining vly ed to
	ICT and other technologies have dramatically increased the size, accura	acv	2.10.1	Controlled and uncontrolled chain reactions.	69
	and geographic and temporal scope of data sets with which scientists work.	of	2.10.2	Nuclear fission reactions.	71
2.5.1	Radioisotopes and radiometric dating.	58	2.11	Nuclear fusion	72
2.6	Alpha, beta and gamma radiation Alpha, beta and gamma radiation have sufficient energy to ionise atoms.	60 e		Nuclear fusion is a reaction in which light nuclides combine to form a heav nuclide, with the release of energy. M energy is released per nucleon in nucl fusion than nuclear fission because	ier ore ear
2.6.1	Effects of radiation.	60		a greater percentage of the mass is transformed into energy.	
2.7	Einstein's mass-energy relationship	61	2.11.1	Nuclear fusion.	72
	Einstein's mass/energy relationship, w applies to all energy changes, enables	hich the	2.11.2	Energy in fission and fusion.	73
	energy released in nuclear reactions to determined from the mass change in t reaction.	be he	2.12	The use of scientific knowledge and international collaboration	74
2.7.1	Nuclear reactions.	61		The use of scientific knowledge is	ol
2.7.2	Mass defect and nuclear energy.	63		and ethical considerations and may have beneficial and/or harmful and/or	a
2.8	Alpha and beta decay,	65		unintended consequences.	
	transmutations			International collaboration is often req when investing in large-scale science	uired
	Aipna and beta decay are examples of spontaneous transmutation reactions w	hile	0 10 1	projects.	71
	artificial transmutation is a managed pro	ocess	2.12.1	Nuclear waste	76
0.0.1		05	2.12.2	The Australian nuclear waste situation	70
2.8.1	Spontaneous and artificial transformations.	65	2.12.3	THE AUSTIALIAN HUCHAI WASLE SILUALION	

Page

91

Dot Point

2.13	Development of models and theories	78
	Development of complex models and/ or theories often requires a wide range of evidence from multiple individuals a across disciplines. The use of scientifi knowledge may have beneficial and/o harmful and/or unintended consequer	/ and c r nces.
2.13.1	The birth of stars.	78
2.13.2	The Hertzsprung-Russell diagram.	79
2.13.3	The Hertzsprung-Russell diagram – a practical.	81
2.13.4	Main sequence stars.	82
2.13.5	Non main sequence stars.	84
2.13.6	Life cycles of stars.	86

Topic 3 Electrical Circuits

3.1 Electric current and charge

Electric current is carried by discrete charge carriers: charge is conserved at all points in an electric circuit.

3.1.1 The charge model for electric current. 91

3.2 Charge carriers and electrical 93 potential difference

Energy is required to separate positive and negative charge carriers; charge separation produces an electrical potential difference that can be used to drive current in circuits.

The energy available to charges moving in an electrical circuit is measured using electric potential difference, defined as the change in potential energy per unit charge between two points in the circuit.

3.2.1 Electrical potential difference 1.	
--	--

Dot Poi	nt I	Dage
3.3	Resistance for ohmic and non-ohmic components	96
	Resistance for ohmic and non-ohmic components is defined as the ratio of potential difference across the comport to the current in the component.	nent
3.3.1	Electrical potential difference 2.	96
3.3.2	The nature of electrical resistance.	98
3.3.3	Ohmic and non-ohmic conductors.	100
3.4	Electrical power and energy transformations	102
	Power is the rate at which energy is transformed by a circuit component; power enables quantitative analysis or energy transformations in the circuit.	f
3.4.1	Electrical power.	102
3.4.2	Analysing an experiment.	104
3.4.3	Components in simple electric circuits.	106
3.4.4	Using ammeters.	107
3.4.5	Using voltmeters.	109
3.5	Circuit analysis and design	111
	Circuit analysis and design involve calculation of the potential difference across, the current in, and the power supplied to components in series, par and series/parallel circuits.	allel
3.5.1	Conductors in series and in parallel.	111
3.5.2	Potential around a series circuit.	113
3.5.3	Analysing series circuits.	114
3.5.4	Series circuit - experimental analysis.	117
3.5.5	Potential around a parallel circuit.	119
3.5.6	Analysing parallel circuits.	120
3.5.7	Parallel circuit – experimental analysis.	124
259	Analysing circuits with series and	126

3.5.8 Analysing circuits with series and 126 parallel resistors.

Science Press

93

Dot Point		Page Dot Point		oint	Page	
3.6	Transferring and transforming	128	3.8	The use of scientific knowledge	145	
	Electrical circuits enable electrical er to be transferred efficiently over larg	nergy e		The use of scientific knowledge is influenced by social, economic, cu and ethical considerations.	ledge is omic, cultural	
distances and transformed into a ra of other useful forms of energy inclu thermal, light and kinetic energy.	nge ding	S	Scientific knowledge can be used develop and evaluate projected ec social and environmental impacts	to conomic, and to		
	Energy is conserved in the energy tra and transformations that occur in an	ansfers	3.8.1	design action for sustainability. Edison versus Westinghouse.	145	
	Science is a global enterprise that re	lies	3.8.2	Energy efficiency of batteries.	147	
	on clear communication, internation conventions, peer review and reproducibility.	al	Answe Electri	ers to Thermal, Nuclear and cal Physics	301	
	Scientific knowledge can be used to develop and evaluate projected econ social and environmental impacts an design action for sustainability.	nomic, id to				
3.6.1	Transformers (Transformers are not mentioned in the syllabus until Unit 3. These questions are included for schools that introduce them in their teaching program here.)	128				
3.6.2	Transforming electrical energy.	131				
3.6.3	Other problems with transmitting.	133				
3.6.4	Circuits in homes.	135				
3.7	Development of electrical technologies	140				
	The development of electrical technol for industrial and residential use in the late 19th century transformed societ electrical power is now a core eleme modern societies.	ologies ne y; ent of				
	Increasing use of electricity has environmental impacts and this has informed government programs, priv investment, community action and incentives for the development of en efficient systems and devices.	vate lergy				
3.7.1	Energy efficiencies of light sources.	140				
3.7.2	Impacts of electricity.	142				

Unit 2 Linear Motion and Waves

Dot Po	bint	Page
Торіс	1 Linear Motion and Force	
1.1	Uniformly accelerated motion and quantities	153
	Uniformly accelerated motion is desc in terms of relationships between measurable scalar and vector quantit including displacement, speed, veloc and acceleration.	cribed ties, tity
1.1.1	Understanding the quantities.	153
1.1.2	The use of SI units to quantify descriptions of motion.	157
1.2	Graphs, vectors and equations of motion	159
	Representations, including graphs an vectors, and/or equations of motion, be used qualitatively and quantitative describe and predict linear motion.	nd can ely to
1.2.1	Equations of motion and vector quantities.	159
1.2.2	Representation of vector and scalar quantities.	164
1.2.3	More vectors in two dimensions.	169
1.2.4	Analysing a vector experiment.	171
1.2.5	Graphical representation and analysis of motion.	172
1.3	Vertical motion	183
	Vertical motion is analysed by assum the acceleration due to gravity is con near the Earth's surface.	ing stant
1.3.1	Measurement of acceleration due to gravity.	183
1.3.2	Vertical motion near the Earth's	187

1.4	Newton's three laws of motion	190
	Newton's three laws of motion describe relationship between the force or forces acting on an object, modelled as a poir mass, and the motion of the object due the application of the force or forces.	e the s nt e to
1.4.1	Analysing some motion experiments.	190
1.4.2	Newton's first law of motion.	192
1.4.3	Newton's second law of motion.	194
1.4.4	Newton's third law of motion.	198
1.4.5	Using Newton's equations of motion.	199
1.4.6	Objects in contact.	202
1.4.7	Objects connected by strings.	203
1.5	Momentum of moving objects	209
	Momentum is a property of moving obj it is conserved in a closed system and be transferred from one object to anoth when a force acts over a time interval.	ects; may ner
1.5.1	Momentum and impulse.	209
1.5.2	The law of conservation of momentum.	212
1.5.3	Momentum and safety during	214

Dot Point

Energy conservation, force, 216 work, kinetic and potential energy

collisions.

1.6

Energy is conserved in isolated systems and is transferred from one object to another when a force is applied over a distance; this causes work to be done and changes to kinetic and/or gravitational potential energy of objects.

- 1.6.1 The relationship between work, 216 energy and force.
- 1.6.2 Force-displacement graphs. 218
- 1.6.3 221 Power.
- 1.6.4 Energy conservation including 223 gravitational potential, kinetic and elastic energies.

Science Press

Page

190

198

203

212

Page

Dot Point

1.7	Elastic and inelastic collisions	227	2.3
	Collisions may be elastic or inelastic; kinetic energy is conserved in elastic collisions.		
1.7.1	Elastic and inelastic collisions.	227	2.3
1.7.2	Analysing experimental data.	228	2.3
Topic	2 Waves		2.3
			2.3
2.1	Longitudinal and transverse	231	2.3
	waves		2.3
	Waves are periodic oscillations that transfer energy from one point to anot	her.	2.4
	Longitudinal and transverse waves are distinguished by the relationship betw the direction of oscillation relative to the direction of the wave velocity.	een ne	
	A transverse electromagnetic theory is needed to explain the polarisation of li	s ght.	0.4
2.1.1	Properties of waves.	231	2.4.
2.1.2	Transverse matter waves.	235	2.4.
2.1.3	Longitudinal matter waves.	238	2.4.
2.1.4	Transverse electromagnetic waves.	240	2.4.
2.1.5	The wave equation.	243	2.4.
2.2	Wave diagrams, period,	244	2.4
	amplitude, wavelength, frequency and velocity		2.4
	Waves may be represented by time and displacement wave diagrams and described in terms of relationships between measurable quantities, include period, amplitude, wavelength, frequent and velocity.	ling ncy	2.5
2.2.1	Analysing wave diagrams 1.	244	
2.2.2	Analysing wave diagrams 2.	246	2.5.
2.2.3	More about soundwaves.	248	2.5

Dot Po	bint	Page
2.3	The ray model of light	251
	A ray model of light may be used to describe reflection, refraction and im formation from lenses and mirrors.	age
2.3.1	Reflection from plane surfaces.	251
2.3.2	Reflection in a plane mirror – a practical.	254
2.3.3	Reflection from curved surfaces.	255
2.3.4	Images formed by concave mirrors.	258
2.3.5	Images formed by convex mirrors.	261
2.3.6	Applications of reflection of sound.	264
2.4	The wave model of light	266
	A wave model explains a wide range of light-related phenomena including reflection, refraction, total internal reflection, dispersion, diffraction and interference; a transverse wave mode required to explain polarisation.	el is
2.4.1	The wave theory of light.	266
2.4.2	Total internal reflection.	267
2.4.3	Refraction 1.	268
2.4.4	Refraction 2.	270
2.4.5	Refraction 3.	272
2.4.6	Refraction 4.	274
2.4.7	Images formed by concave lenses.	276
2.4.8	Images formed by convex lenses.	279
2.5	Superposition of waves in a medium	282
	The superposition of waves in a med may lead to the formation of standing waves and interference phenomena, including standing waves in pipes an stretched strings.	lium g id on
2.5.1	Superposition of waves.	282

Unit 2 Linear Motion and Waves

Dot Point

2.6	Mechanical waves	287
2.6	Mechanical waves	

A mechanical system resonates when it is driven at one of its natural frequencies of oscillation; energy is transferred very efficiently into systems under these conditions.

Mechanical waves transfer energy through a medium; mechanical waves may oscillate the medium or oscillate the pressure within the medium.

- 2.6.1 Mechanical waves. 287
- 2.7 Particle, electromagnetic 288 and quantum theories of light

The mechanical wave model can be used to explain phenomena related to reflection and refraction (for example, echoes, seismic phenomena).

Light exhibits many wave properties; however, it cannot be modelled as a mechanical wave as it can travel through a vacuum.

- 2.7.1 The particle theory of light. 288
- 2.7.2 The electromagnetic wave theory 288 of light.
- 2.7.3 The quantum theory of light. 289

2.8 Advances in science 290 understanding

Advances in science understanding in one field can influence other areas of science, technology and engineering.

Scientific knowledge can enable scientists to offer valid explanations and make reliable predictions.

Scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability.

- 2.8.1Acoustics.2902.8.2Earthquake waves.2902.8.3Tsunamis.2912.8.4Monitoring earthquakes292
- and tsunamis.
- 2.8.5 Making buildings earthquake proof. 292

Dot Point

Page

2.9	Developing models and theories	293
	Development of complex models and/ or theories often requires a wide range of evidence from multiple individuals a across disciplines.	nd
	Scientific knowledge can enable scient to offer valid explanations and make reliable predictions.	tists
2.9.1	The Michelson-Morley experiment.	293
2.10	The speed of light and the inverse square law	295
	The speed of light is finite and many of of magnitude greater than the speed of mechanical waves; its intensity decreas in an inverse square relationship with distance from the source.	rders f ses
2.10.1	The inverse square law 1.	295
2.10.2	The inverse square law 2.	296

Page

Answers to Linear Motion and Waves 349

DOT POINT

Unit 1 Thermal, Nuclear and Electrical Physics

DOT POINT

TOPIC 1

Heating Processes

Science Press

Dot Point WACE Physics Units 1 and 2

1.1 The kinetic particle model, internal thermal energy and temperature.

1.1.1 The kinetic theory of matter.

1.1.1.1 The last column in the table gives the second halves of the sentences. Choose the correct second half for each sentence and write it in the first column of the table to summarise the kinetic theory of matter.

Completed sentences	Second halves (not in order)
All matter is	at absolute zero.
The particles of matter are always moving except	they are held together by strong forces.
Particles in matter are held	in any direction so that gases always fill their containers.
The particles in solids cannot move freely because	are weaker than those holding particles together in solids.
Particles in solids simply vibrate	studying the properties of matter.
In liquids particles can	made up of particles which are in continuous motion.
The forces holding particles together in liquids	together by forces which vary in strength.
Particles in gases are free to move	roll over one another.
Particles in gases are	to explain and predict the behaviour of matter.
Particles of matter are far too	in their fixed positions.
We deduce the behaviour of the particles of matter by	small to be seen even under a microscope.
We use the kinetic theory of matter	not held together.

1.1.2 Kinetic theory and properties of matter.

- 1.1.2.1 Why can't we compress liquids and solids?
 - (A) They are too dense.
 - (B) Their particles are held together too tightly.
 - (C) Their particles are further apart.
 - (D) Their particles are already as close together as they can be.

1.1.2.2 Why can liquids be poured?

- (A) Their particles are held together loosely.
- (B) Their particles are not held together.
- (C) Their particles can roll over one another.
- (D) Their particles are held together tightly.
- 1.1.2.3 What will cause the particles of matter to move more slowly?
 - Weaker forces between them. (A)
 - (C) Heating the matter. (D) Shaking the matter.
- 1.1.2.4 What happens to the particles of matter when it contracts?
 - (A) They get smaller and occupy less space.
 - (B) They get smaller and decrease in volume.
 - (C) They break the forces holding them together and spread out into a larger volume.
 - (D) They move more slowly, collide less violently, and move closer together.
- 1.1.2.5 Which is an example of diffusion?
 - Spilt water spreading over the floor. (B) Noticing the perfume your friend is wearing. (A)
 - (C) Molten lava flowing out of an active volcano. (D) Writing with a felt pen.
- 1.1.2.6 Between which particles would you expect the forces to be weakest?
 - Between air particles. (B) Between water particles. (A)
 - (C) Between ice particles. (D) Between lemonade particles.
- 1.1.2.7 Considering what you know about roll on deodorants, which statement is correct?
 - (A) Forces between deodorant particles and skin particles are stronger than those between deodorant particles.
 - (B) Forces between deodorant particles are stronger than those between deodorant and skin particles.
 - (C) Forces between deodorant particles are equal to those between deodorant and skin particles.
 - (D) Forces between deodorant particles are equal to those between skin particles.
- 1.1.2.8 Which particles will have the least energy?
 - (A) Water liquid particles at 60°C.
 - (C) Water liquid particles at 50°C.
- 1.1.2.9 Why do liquids diffuse more slowly than gases?
 - (A) Their particles are held together more firmly.
 - (C) Their particles are larger.
- 1.1.2.10 Why can't solids be poured?
 - (A) Their particles are held together more strongly than in liquids.
 - (B) Their particles are not held together.
 - (C) Their particles are held together in fixed positions.
 - (D) Their particles are as close together as they can be.

- Water vapour particles at 60°C. (B)
- (D) Water vapour particles at 50°C.
- (B) Their particles are not held together.
- (D) Their particles move more quickly.

- (B) Cooling the matter.

1.1.2.11 Complete the following table.

	Fact	Kinetic theory explanation
(a)	Air can be compressed.	
(b)	Liquids diffuse into each other.	
(c)	Cooking odours spread throughout the house.	
(d)	You can dry yourself with a towel.	
(e)	Liquids do not fill their containers.	
(f)	Glass objects shatter when dropped onto a hard floor.	
(g)	Concrete footpaths have black rubber strips every few metres.	
(h)	Gases expand quickly when heated.	
(i)	Solids have a constant shape.	
(j)	Liquids expand when heated.	
(k)	If a soccer ball gets a hole in it, the air leaks out.	
(I)	Large bridges sit on, and are free to move on rollers at one end.	
(m)	Your breath is 'foggy' on a very cold day.	
(n)	A balloon expands on a hot day.	

1.1.3 Temperature and the kinetic theory.

1.1.3.1 Complete the sentences in the first column of the table by matching the phrase provided with the correct alternative from the second column.

Completed sentences		Second halves (not in order)
(a)	Temperature is a measure of how fast	the faster the particles are moving.
(b)	Temperature is a measure of	solid particles at the same temperature.
(c)	The higher the temperature,	the average kinetic energy of the particles of matter.
(d)	When matter is heated its	its particles lose energy and slow down.
(e)	When matter is cooled	the extra energy they have because the particles move more freely.
(f)	Gas particles have more energy due to	the particles of matter are moving.
(g)	Similarly, liquid particles have more energy than	their state than liquid particles at the same temperature.
(h)	In both cases (f) and (g), this is due to	particles absorb energy and move faster.

1.1.3.2 In terms of the kinetic theory, identify the values of and justify the concept of an absolute zero temperature.

1.1.3.3 Consider the following five pictures of water.

A: Ice at 0°C

B: Water at room temperature

C: Water at 0°C

(a) Rank the speed of the particles of water/ice/steam in order of moving fastest to slowest. Justify your answer.

Rank the kinetic energy of the particles of water/ice/steam

in order most to least. Justify your answer.

D: Steam at 100°C

	E: Water at 100°C
(c)	In which will the water particles have the most total energy? Justify your answer.
(d)	In which will the water particles have the least total energy? Justify your answer.
(e)	Steam at 100°C will actually cause more severe burns to a person than water at 100°C. Hypothesise why this is so.

Science Press

(b)

DOT POINT

Answers

1.1.1.1

Completed sentences
All matter is made up of particles which are in continuous motion.
The particles of matter are always moving except at absolute zero.
Particles in matter are held together by forces which vary in strength.
The particles in solids cannot move freely because they are held together by strong forces.
Particles in solids simply vibrate in their fixed positions.
In liquids particles can roll over one another.
The forces holding particles together in liquids are weaker than those holding particles together in solids.
Particles in gases are free to move in any direction so that gases always fill their containers.
Particles in gases are not held together.
Particles of matter are far too small to be seen even under a microscope.
We deduce the behaviour of the particles of matter by studying the properties of matter.
We use the kinetic theory of matter to explain and predict the behaviour of matter.

1.1.2.1 1.1.2.2 1.1.2.3 1.1.2.4 1.1.2.5 1.1.2.6 1.1.2.7 1.1.2.8 1.1.2.9 1.1.2.9 1.1.2.10 1.1.2.11

D

С

В

D

В

А

А

С

А

С

	Fact	Kinetic theory explanation
(a)	Air can be compressed.	Air is a gas and its particles are not close together, therefore they can be pushed closer together.
(b)	Liquids diffuse into each other.	Particles in a liquid are free to roll over one another and as they do so they gradually mix or diffuse together.
(c)	Cooking odours spread throughout the house.	Gas particles from the cooking food are free to move and diffuse relatively quickly through the house.
(d)	You can dry yourself with a towel.	Water particles are not held together by strong forces and they bond to the particles in the towel with stronger forces.
(e)	Liquids do not fill their containers.	The forces between the liquid particles hold them together and prevent them from breaking free from each other (evaporating) to fill the container.
(f)	Glass objects shatter when dropped onto a hard floor.	The forces involved in the collision between the glass and the floor are stronger than the forces holding glass particles together.
(g)	Concrete footpaths have black rubber strips every few metres.	These are soft expansion joints so that in hot weather, when the concrete blocks expand they squash the rubber rather than pushing against each other and breaking.
(h)	Gases expand quickly when heated.	Gas particles are not held together and are free to move when the gas is heated. They move faster and collide with each other more violently and take up more space if it is available (if not, the pressure increases).
(i)	Solids have a constant shape.	Particles in a solid are held together by relatively strong forces.
(j)	Liquids expand when heated.	Liquid particles roll over one another faster when heated and need more room to move about.