NATIONAL MATHS

Jim Wade
 Jack Mock
 Bob Starink

© Science Press 2015 First published 2015

Science Press Private Bag 7023 Marrickville NSW 1475 Australia Tel: (02) 9516 1122 Fax: (02) 9550 1915 sales@sciencepress.com.au www.sciencepress.com.au All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Science Press. ABN 98 000 073 861

Contents

YEAR 8	3 REVIEW	
Chap	ter 1 Year 8 Review	1
Gettir	ng started	2
1.1	Using the four operations with integers	
	and rational numbers and using index	
	notation with numbers	3
1.2	Working with real numbers – rational	
	and irrational	5
1.3	Calculating percentage change, ratio	
	and rates	7
1.4	Congruence	11
1.5	Chance and compound events	14
1.6	Products and factors	18
1.7	Special quadrilaterals	21
1.8	Solving equations	26
1.9	Measuring area, volume and time	30
1.10	Profit and loss	33
1.11	Pythagorus' theorem	35
1.12	Circles	38
1.13	Data representation and interpretation	41
NUMB	ER AND ALGEBRA • REAL NUMBERS A	
Chap	ter 2 Proportion and Rates	43
Gettir	ng started	44
2.1	Converting rate units	45
2.2	Recognising and using proportion	48

2.3	Representing direct and inverse proportion	
	with graphs	53
2.4	Creating and interpreting distance/time	
	graphs with variable rates of change	61
2.5	Miscellaneous extension exercise	66
How n	nuch do you know?	67
Chapt	er 2 Diagnostic test	70

NUMBER AND ALGEBRA • REAL NUMBERS B

Chapter 3 Indices Getting started Expressing the index laws in algebraic form 3.1 3.2 Expressing numbers in index form 3.3 Expressing numbers in scientific notation Using the index laws with fractions 3.4 3.5 Using logarithm notation for index statements 3.6 Developing the logarithm laws from the laws of indices 3.7 Drawing the graphs of $y = a^x$ and $y = \log a^x$ 3.8 Miscellaneous extension exercise How much do you know? Chapter 3 Diagnostic test

NUMBER AND ALGEBRA • MONEY AND FINANCIAL MATHEMATICS Chapter 4 Financial Mathematics 103

er + i maneiar machematics	105
Getting started	
Performing percentage calculations	105
Calculating income from salary and wages	108
Earning money from non-salary and wages	111
	g started Performing percentage calculations Calculating income from salary and wages Earning money from non-salary and wages

4.4	Calculating income tax	114
4.5	Calculating simple intrest	119
4.6	Buying goods on terms and using credit	123
4.7	Miscellaneous extension exercise	126
How	much do you know?	128
Chap	ter 4 Diagnostic test	131
GEON MEAS	IETRY AND MEASUREMENT • USING UNITS OF UREMENTS A	
Chap	ter 5 Areas of Composite Shapes	
and S	Surface Area	133
Getti	ng started	135
5.1	Calculating areas of composite shapes	136
5.2	Calculating the surface area of right prisms	141
5.3	Calculating the surface area of cylinders	
	and composite solids	145
5.4	Miscellaneous extension exercise	148
How	much do you know?	150
Chap	ter 5 Diagnostic test	153

STATISTICS AND PROBABILITY • CHANCE Chapter 6 Probability 155 Getting started 156 6.1 Counting the relative frequencies of experimental outcomes 157 6.2 Calculating the probability of compound events using 'not', 'and' and 'or' 163 6.3 Calculating the probability of compound events from two-way tables 168 6.4 Calculating the probability of events in two-step chance experiments 174 6.5 Miscellaneous extension exercise 180 How much do you know? 182 Chapter 6 Diagnostic test 184

NUMBER AND ALGEBRA • PATTERNS AND ALGEBRA

73

75

76

79

80

86

89

91

94

96 98

101

Chap	ter 7 Algebra	187
Getti	ng started	188
7.1	Reviewing the index laws and applying	
	them to variables	189
7.2	Applying the distributive law to the	
	expansion of algebraic expressions	192
7.3	Simplifying algebraic fractions with	
	numerical denominators	196
7.4	Expanding binomial products	200
7.5	Using simple exponential and logarithmic	
	expressions in algebra	205
7.6	Miscellaneous extension exercise	208
How	much do you know?	209
Chap	ter 7 Diagnostic text	213

REVISION PAPERS FOR CHAPTERS 1107	
Chapter 8 Revision Papers for Chapters 1 to 7	215
Revision paper 1	216
Revision paper 2	220
Revision paper 3	224

GEOMETRY AND MEASUREMENT • USING UNITS OF MEASUREMENTS B

Cha	pter 9 Volumes of Prisms and Cylinders	229
Gett	Getting started	
9.1	Finding the volume of composite	
	right prisms	231
9.2	Calculating the volume of cylinders	235
9.3	Relating volume and capacity	239
9.4	Miscellaneous extension exercise	242
How	[,] much do you know?	243
Chapter 9 Diagnostic test		246

STATISTICS AND PROBABILITY • DATA REPRESENTATION AND INTERPRETATION

<u> </u>	. 40 D .	0.40
Chapter 10 Data		249
Getti	ng started	250
10.1	Identifying issues in collecting data	
	from secondary sources	251
10.2	Describing the shape of frequency	
	histograms, dot plots and	
	stem-and-leaf plots	258
10.3	Comparing data displays using	
	the mode, mean, median and range	263
10.4	Critically analysing statistical reports	268
10.5	Miscellaneous extension exercise	274
How much do you know?		275
Chap	Chapter 10 Diagnostic test	

NUMBER AND ALGEBRA • LINEAR AND NON-LINEAR RELATIONSHIPS A

Chap	ter 11 Coordinate Geometry and Graphs	285
Gettir	ng started	287
11.1	Finding the midpoint of an interval	288
11.2	Using the concept of the gradient of a line	292
11.3	Calculating the distance between two	
	points on the Cartesian plane	297
11.4	Graphing straight lines from their	
	equations	302
11.5	Graphing straight lines from the gradient-	
	intercept form of their equations	307
11.6	Using formulas to analyse diagrams and	
	graphs on the number plane	311
11.7	Using a variety of forms of the equation	
	of a straight line	313
11.8	Miscellaneous extension exercise	317
How	much do you know?	319
Chap [.]	ter 11 Diagnostic test	324
GEOM	ETRY AND MEASUREMENT • GEOMETRIC REASONING	
Chap	ter 12 Enlargement and Similarity	327
Gettin	ng started	328

Gettin	ig started	520
12.1	Using the enlargement transformation	
	to explain similarity	329
12.2	Finding the enlargement factor and	
	matching sides, vertices and angles	
	in similar figures	335
12.3	Producing scale drawings	339
12.4	Calculating unknown sides in similar	
	triangles	345
12.5	Miscellaneous extension exercise	351
How much do you know?		353
Chapter 12 Diagnostic test		356

RELATIONSHIPS B 229 Chapter 13 Non-linear Graphs and Equations

Chapter 13 Non-linear Graphs and Equations		359
Gettin	g started	360
13.1	Sketching non-linear graphs from a	
	table of values	361
13.2	Determining some properties of	
	non-linear graphs	363
13.3	Analysing exponential and circle	
	equations and sketching their graphs	367
13.4	Miscellaneous extension exercise	369
How much do you know?		370
Chapter 13 Diagnostic test		373

NUMBER AND ALGEBRA • LINEAR AND NON-LINEAR

GEOMETRY AND MEASUREMENT • PYTHAGORUS AND TRIGONOMETRY		
Chap	ter 14 Trigonometry	375
Getting started		377
14.1	Reviewing Pythagorus' theorem	378
14.2	Finding side and angle relationships	
	in right-angled triangles	381
14.3	Using the constancy of trigonometric	
	ratios for a given angle to find its size	385
14.4	Using trigonometric ratios to find	
	unknown sides in a right triangle	389
14.5	Using trigonometry with angles in	
	degrees and minutes	393
14.6	using trigonometry to calculate sides	
	and angles in 3-dimensional figures	396
14.7	Miscellaneous extension exercise	400
How much do you know?		402
Chapter 14 Diagnostic test		406

NUMBER AND ALGEBRA • REAL NUMBERS C

Chapt	ter 15 Surds and Fractional Indices	409					
Gettir	ng started	411					
15.1	Reviewing real numbers						
15. 2	Performing arithmetical calculations						
	with surds	415					
15.3	Using the four operations with surds	418					
15.4	Expanding binominal products						
	containing surds	423					
15.5	Rationalising a binomial denominator	426					
15.6	Using fractional indices	428					
15.7	Miscellaneous extension exercise	430					
How r	nuch do you know?	432					
Chapter 15 Diagnostic test 435							

REVISION PAPERS FOR CHAPTERS 1 TO 15	REVISION	PAPERS	FOR	CHAPTERS	1 TC	D 15
--------------------------------------	----------	--------	-----	-----------------	------	------

Chapter 16 Revision Papers for Chapters 1 to 15	437
Revision paper 4	438
Revision paper 5	443
Revision paper 6	448
Appendices	
ACARA syllabus map	453
Learning program	454
How to use Geogebra	458
Answers	461
Glossary	503
Index	506

Chapter 1 Year 8 Review

KEY SKILLS AND KNOWLEDGE

By the end of this chapter you should be able to:

- Carry out the four operations with integers and rational numbers and use index notation with numbers. (1.1)
- Work with real numbers rational and irrational. (1.2)
- Calculate percentage change, ratio and rates. (1.3)
- Identify and work with congruent figures. (1.4)
- Calculate the probabilities of simple and compound events and use Venn diagrams. (1.5)
- Simplify algebraic expressions including grouping symbols. (1.6)
- Measure length and calculate areas including squares, rectangles and triangles. (1.7)
- Perform calculations with money and GST correctly. (1.8)
- Transform points, lines and shapes by translating, reflecting and rotating. (1.9)
- Solve linear equations by a variety of methods. (1.10)
- Calculate the volume of prisms. (1.11)
- Construct geometrical figures and determine their side, angle and diagonal properties. (1.12)
- Collect, display and summarise statistical data. (1.13)

What's

this then?

More of the same? I was hoping

to start some really

exciting stuff like trigonometry!

GETTING STARTED

Before undertaking some detailed practice on last year's work, try a quick quiz to see if you can recall some of the basics. If you find difficulty with this set perhaps you had better borrow a year 8 book and have a look over what you have missed.

1.	-6×-7 is equal t	to:								
	(A) –13	(B)	-1		(C)	-42		(D) 42		\mathcal{A}
2.	$\frac{1}{2} - \frac{1}{3}$ is equal to:									Y Y
	(A) 1	(B)	$\frac{5}{6}$		(C)	$\frac{1}{6}$		(D) $\frac{0}{1}$		
3.	Increase \$40 by 20	0%. T	he res	ult is:		0		-1		
	(A) \$60	(B)	\$48		(C)	\$8		(D) \$44		
4.	Which of these is a	not a	test fo	r congru	uent t	riangle	s?			
	(A) SSS		(B)	AAA			(C)	AAS	(D)	SAS
5.	A six-sided die is t	tossec	l once.	What i	s the	probab	ility o	f throwing a multip	le of 3	?
	(A) $\frac{1}{6}$		(B)	$\frac{1}{2}$			(C)	$\frac{1}{3}$	(D)	$\frac{2}{3}$
6.	Simplify $-2a \times 3a$	$b \times 2$	b.	-				2		0
	(A) 12 <i>ab</i>		(B)	7ab			(C)	$-12a^{2}b^{2}$	(D)	$-7a^{2}b^{2}$
7.	Which quadrilater	al has	equal	diagon	als?					
	(A) A parallelogr	am.	(B)	A recta	angle.		(C)	A rhombus.	(D)	A trapezium.
8.	Solve $2x + 3 = 11$.									
	(A) $x = 4$.		(B)	x = 8.			(C)	x = 7.	(D)	None of these.
9.	The area of a trian	gle w	ith a b	ase of 1	0 cm	and a l	neight	of 4 cm is:		
	(A) 40 cm^2		(B)	20 cm ²	2		(C)	60 cm ²	(D)	80 cm ²
10.	The volume of a re	ectang	gular b	ox mea	suring	g 1.5 m	by 30) cm by 20 cm is:		
	(A) 0.9 m^3		(B)	90 cm ³	3		(C)	900 000 cm ³	(D)	90 000 cm ³

- **11.** Find the cost of a bike sold for \$60 at 20% profit.
 - (A) \$66
 - (B) \$54
 - (C) \$50
 - (D) \$48
- **12.** Find the length of the hypotenuse of a right-angled triangle if the other two sides are 8 cm and 15 cm.
 - (A) 17 cm
 - (B) 23 cm
 - (C) 79 cm
 - (D) 384 cm

1.1 Using the four operations with integers and rational numbers and using index notation with numbers

Summary

Positive \times positive = positive.	Example: $+3 \times +4 = 12$.
Negative × positive = negative.	Example: $-3 \times +4 = -12$
Positive \times negative = negative.	Example: $+3 \times -4 = -12$
Negative × negative = positive.	Example: $-3 \times -4 = 12$.

Two like signs multiply (or divide) to give +.

Two unlike signs multiply (or divide) to give -.

Solution:

Easy rule:

Example:

(a) $(-2 \times -6) \times -3 = 12 \times (-3) = -36$ (b) $-3 \times -4 \div (-6) = 12 \div (-6) = -2$

Evaluate these numerical expressions.

 $(-2) \times (-6) \times -3$

(b) $-3 \times -4 \div (-6)$

(a)

Decimals

The rules for multiplying positive and negative decimals and fractions are identical to those for integers.

Example:	Calc	ulate:		
	(a)	$0.5 \times (-0.3)$	(b)	-0.3×-0.5
Solution:	Rem	ove the decimal points, multiply the integers,	then ir	nsert 2 decimal places.
	(a)	$5 \times -3 = -15$	(b)	$-3 \times -5 = 15$
		$0.5 \times 0.3 = -0.15$		$-0.3 \times (-0.5) = 0.15$

Fractions

Solution:

Example: Calculate:

(a) $-\frac{2}{3} \times \frac{4}{5}$ (b) $\left(-\frac{3}{4}\right) \times \left(-\frac{2}{5}\right)$ (a) $-\frac{2}{3} \times \frac{4}{5} = \frac{-2 \times 4}{3 \times 5} = \frac{-8}{15}$

(b) $\left(-\frac{3}{4}\right) \times \left(-\frac{2}{5}\right) = \frac{-3 \times 2}{\cancel{4} \times 5} = \frac{3}{10}$

Science Press National Maths Year 9

Using indices

increases the power of the operation. Go down one

level on the table.

Operations with indices

Recall the order of operations.

	Operation	Inverse operation
Weak	+	-
Stronger	×	÷
Strongest	() ⁿ	$\sqrt{()}$

When evaluating an expression, do the strongest operations first.

Example 1:	Eval	luate:			
	(a)	$4^{3} \times 4^{5}$	(b)	$5^9 \div 5^7$	
Solution:	(a)	$4^3 \times 4^5 = 4^{3+5} = 4^8$ (To multiply, add the indices.)	(b)	$5^9 \div 5^7 = 5^{9-7} = 5^2$ (To divide, subtract the indices.)	
Example 2:	Eval	luate:			
	(a)	$(2^4)^2$	(b)	$\sqrt[3]{2^{12}}$	
Solution:	(a) (b)	$(2^4)^2 = 2^{4 \times 2} = 2^8$ (To raise one power to another, multip $\sqrt[3]{2^{12}} = 2^{12 \div 3} = 2^4$ (To find the cube root, divide the inde	oly the indice ex by 3.)	es.)	

Any number divided by itself gives 1.

 $2^3 \div 2^3 = 1$ and $2^3 \div 2^3 = 2^{3-3} = 2^0 = 1$

 $2^2 \times 3^3$ has no short cut or rule to apply because the powers have different bases.

EXERCISE 1.1

Using the four operations with integers and rational numbers and using index notation with numbers

For the exercises in this set, check every third answer using a calculator.

1. Evaluate:

	(a) $3 \times (-2)$	(b)	8 ÷ (-4)	(c)	-7×5	(d)	$-9 \div 3$
	(e) $-2 \times (-7)$	(f)	-16 ÷ (-4)	(g)	$-3 \times (-4) \div 2$	(h)	$8 \times 9 \times (-2)$
2.	Evaluate the following.						
	(a) $(-4)^2$	(b)	$(-8)^2$	(c)	$(-11)^2$	(d)	$(-0.3)^2$
	(e) $(-3)^3$	(f)	$(-4)^3$	(g)	$-(-1)^3$	(h)	$-10 \times (-5)^3$
3.	Multiply or divide these	decin	nals.				
	(a) -1.8×2	(b)	-1.1×-3	(c)	0.4×-1.1	(d)	-3.1×-0.3
	(e) $0.16 \div (-0.4)$	(f)	$(-0.24) \div (-0.6)$	(g)	$(-0.4)^2$	(h)	$(-0.2)^3$

4. Multiply or divide these fractions.

	(a)	$\frac{1}{4} \times -$	$\frac{1}{3}$		((b)	$-\frac{3}{4} \times$	$-\frac{2}{5}$		(c)	$\left(-\frac{4}{5}\right)^2$	2		(d)	$-\left(\frac{-3}{4}\right)^3$
	(e)	$-\frac{1}{2}\times$	$-\frac{2}{5} \times$	$(-\frac{5}{6})$	((f)	$-1\frac{1}{2}$	$\times 3\frac{1}{2}$		(g)	$-2\frac{1}{4}$	$\div -1\frac{1}{3}$		(h)	$-1\frac{1}{2} \times -2\frac{2}{3} \div -3\frac{3}{4}$
5.	Use	your c	calcul	ator to	o obta	ain:	2	Z			4	3			2 3 4
	(a)	$\sqrt{36}$			((b)	$\sqrt{324}$	Ī		(c)	x if x^2	= 256.		(d)	$y \text{ if } y^2 = 81.$
6.	Two	more	than	–8 is	addeo	d to t	he pr	oduct	of 4 ar	nd 6 le	ss than	2. What	t is the	resul	lt?
7.	Two	numb	ers h	ave a	produ	uct o	f 30 a	ind a s	um of	-11. F	Find the	two nu	mbers	-	
8.	Expa	and th	ese p	owers	and	write	e each	of the	em as a	an inte	ger.				
	(a)	23					(b) 3 ⁴					(c)	$(-2)^{5}$	
	(d)	$(-5)^3$					(e) (-	$(2)^{6}$				(f)	(-10))7
9.	Writ	e each	n of th	nese p	ower	s in i	ndex	form u	using t	he ind	icated b	oase.			
	(a)	16 (b	ase 2).	((b)	36 (b	ase 6).		(c)	-8 (b	ase -2).	•	(d)	-1000 (base -10).
10.	Simp	olify t	hese e	expres	ssions	s, tak	ing c	are to	apply	the con	rrect or	der of o	peratio	ons.	
	(a)	$4^2 \times 3^2$	3 + 2	(b) 4	+ 5 >	× 2 ³	(c)	5 - ($(2 \times 3)^2$	² (d)	(6 - 2)) × 3 ²	(e)	$3^2 \times 5 - 4 \times 2^3$
11.	Writ	e the a	answe	er to t	hese j	produ	ucts a	nd quo	otients	, leavi	ng your	answei	r in inc	lex fo	orm.
	(a)	$5^2 \times 5^2$	58	(b	b) 3^4	¹⁹ × 3		(c)	$8^0 \times$	82	(d)	$2^7 \div 2^3$		(e)	$17^5 \div 17^3$
12.	Expa	and th	ese bi	racket	ts, lea	ving	your	answe	er in ir	ndex fo	orm.				
	(a)	$(2^3)^5$		(b) (3	$(2)^4$		(c)	(10^{6})	2	(d)	$(5^{99})^2$		(e)	$(3^3)^3$
13.	Find	these	roots	s, leav	ring y	our a	answe	er in in	dex fc	orm.		<u> </u>			5 <u> </u>
	(a)	$\sqrt{2^{16}}$		(b) √	16^{4}		(c)	$\sqrt[3]{2^{12}}$		(d)	$\sqrt{4^{100}}$		(e)	$\sqrt[5]{10^{20}}$
14.	Sim	olify t	hese i	ndex	calcu	ilatio	ns.				2/2	16			
	(a)	$(5^3 \times$	$5^{24})^0$		((b)	$(2^0 \times$	$(2^{99})^2$		(c)	$\sqrt[3]{7^2}$ ×	7^{10}		(d)	$10^{15} \div 10^{3}$
15.	Use	this ta	ble o	f the j	power	rs of	2 to p	perform	n these	e calcu	ilations	using a	short	cut m	ethod with indices.
	20	2 ¹	2 ²	2 ³	24	2 ⁵	2 ⁶	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰	2 ¹¹	2 ¹²		
	1	2	4	8	16	32	64	128	256	512	1024	2048	4096	1	
		120	. 1.6	I				1) 22	2					_	254
	(a)	120 /	< 10				(D) 32	-				(C)	2048	÷256

1.2 Working with real numbers – rational and irrational

Fractions with denominators divisible only by powers of 5 and 2 are terminating decimals. All other fractions have decimals that recur.

To convert a **terminating decimal** to a fraction, it is only necessary to place the digits over a power of 10 with the same number of zeros as decimal places.

Example: Convert 0.375 to a fraction in its lowest terms.

Solution: $0.375 = \frac{375}{1000} = \frac{15}{40} = \frac{3}{8}$

The conversion of **recurring decimals** follows a simple pattern. Single digit recurring decimals are expressed as 9ths, double digit recurring decimals as 99ths and so on.

Example: Convert these recurring decimals to fractions in their lowest terms.

		•		• •
	(a)	0.4	(b)	0.65
Solution	(\mathbf{a})	04 - 4	(b)	0.65 - 65 - 13
Solution.	(a)	$0.4 - \frac{1}{9}$	(0)	$0.03 - \frac{1}{99} - \frac{1}{33}$

To convert a partially recurring decimal to a fraction, separate the non-terminating and terminating decimal parts, convert each to a fraction and add.

Convert 0.83 to a fraction. **Example:**

 $0.8\overset{\bullet}{3} = 0.8 + 0.0\overset{\bullet}{3} = \frac{8}{10} + \frac{0.3}{10} = \frac{4}{5} + \frac{\frac{3}{9}}{10} = \frac{4}{5} + \frac{1}{30} = \frac{25}{30} = \frac{5}{6}$ Solution:

All terminating and recurring decimals can be written as fractions and are called **rational numbers**.

Non-terminating, non-recurring decimals cannot be written as fractions and are called **irrational numbers**.

Square roots of non-square numbers are irrational while square roots of square numbers are rational.

Example 1:	$\sqrt{1980} = \sqrt{2^2 \times 3^2 \times 11 \times 5}$	Irrational as 11 and 5 are odd powers.
Example 2:	$\sqrt{1764} = \sqrt{2^2 \times 3^2 \times 7^2}$	Rational as all of the factors are even powers.

EXERCISE 1.2

- To calculate an approximation for the *irrational number* $\sqrt{2}$, you will need a calculator. 8.
 - (a) Make a first approximation for $\sqrt{2} \approx 1$. (Note the sign ' \approx ' means 'approximately equal to'.)
 - (b) Now square the approximation $(1)^2 = 1$ and find the difference from 2. (Difference 2 1 = 1.)
 - (c) Halve the difference and add this to the first approximation. 1 + 0.5 = 1.5.
 - (d) Second approximation = 1.5. Squaring = 2.25 and finding the difference 2 2.25 = -0.25.
 - (e) Halve the difference (-0.125) and add it to 2nd approximation 1.5 + (-0.125) = 1.375.
 - (f) Using your calculator, perform 2 more steps of this algorithm. Compare your answer to the answer provided by your calculator for $\sqrt{2}$. Is it correct to 3 significant figures? Here is a flow chart to do this.

9. By reducing these numbers to powers of their prime factors, decide if the square roots are rational or irrational numbers. Check your answers with a calculator.

(a) $\sqrt{12}$ (b) $\sqrt{225}$ (c) $\sqrt{576}$ (d) \cdot	√ <u>588</u>
---	--------------

10. For each of these numbers state whether they are rational or irrational. (d) $9\sqrt{2}$ (e) $2\sqrt{9}$ (a) $7\sqrt{3}$ (b) $100\sqrt{5}$ (c) $5\sqrt{100}$ (j) $5 - \sqrt{25}$ $17\sqrt{5}$ (g) $1 + \sqrt{2}$ (h) $1 + \sqrt{4}$ (i) $25 - \sqrt{5}$ (f) Complete this statement: The irrational number π is defined as <u>circumference</u> 11.

Which one of these is *not* an approximation for π ? 12. <u>22</u> (A) 3.142 (C) $3\frac{1}{7}$ **(B)** (D) 3.28

Calculating percentage change, ratio and rates 1.3

To find a percentage of a quantity, write the percentage as a decimal or fraction and then multiply by the quantity.

Example:	(a)	Find 15% of \$850 using decimals.
----------	-----	-----------------------------------

(b) Find 35% of \$720 using fractions.

Solution:

 $(15 \div 100) \times 850 = 0.15 \times 850 = 127.50 (a) $\frac{35}{100} \times 720 = 252 (b)

Note: When using a calculator it is usually easier to change the percentage to a decimal rather than changing to a fraction to solve percentage problems.

One quantity as a percentage of another

Example: What percentage of 2 L is 800 mL? Solution: Write 800 mL as a fraction of 2000 mL. $\frac{800}{2000} \times \frac{100}{1}\% = 40\%.$

$$\frac{1}{2000}$$
 ^ -1 /0

Science Press National Maths Year 9

Percentage composition

Percentages are sometimes used to give the composition of mixtures.

Chummy dog food contains 400 g protein, 40 g fat, **Example 1:** 5 g fibre and 5 g salt.

Total = 400 + 40 + 5 + 5 = 450 g.

Find the percentage composition of the ingredients.

Solution:

Protein = $\frac{400}{450} \times 100\%$ = 89%. Fat = $\frac{40}{450} \times 100\%$ = 9%. Fibre = $\frac{5}{400} \times 100\% = 1\%$. Salt = 1%.

Example 2:	Kirra earns \$750 per week.
	Calculate her new wage if she receives a pay rise of $3\frac{1}{2}$ %.
Solution:	Add 3.5% to the original $100\% = 103.5\%$.
	$1.035 \times 750 = $ \$776.25

To find the

Dividing a quantity in a given ratio

The ratios of the blood types O, A, B and AB in the population are approximately 10: 10: 4: 1. **Example:** How many units of each type should a hospital requiring 2000 units of blood receive?

	0	Α	В	AB	Total
Ratio	10	10	4	1	25
Blood units	x	у	z	w	2000

Solution:

original wage.

$$x = y = \frac{20\,000}{25} = 800$$
 units (O, A). $z = \frac{8000}{25} = 320$ units (B). $w = 80$ units (AB)

Calculating rates

600 metres is travelled in 3 minutes. **Example:** What is this speed in km/h?

 $\frac{x}{10} = \frac{y}{10} = \frac{z}{4} = \frac{w}{1} = \frac{2000}{25}$

- Solution: Distance : time
 - = 600 metres : 3 minutes
 - $= 12\ 000\ \text{metres}$: 60 minutes
 - $(\times 20 \text{ to obtain 1 hour using the unitary method.})$
 - = 12 km/h.

7.

EXERCISE 1.3

Calculating percentage change, ratio and rates

- Find the percentage of the given quantity by changing the percentage to a decimal.
 (a) 15% of \$250.
 (b) 45% of 700 mL.
 (c) 84% of 250 cm.
 (d) 120% of 3.6 L.
- 2. Find the percentage of the quantity by changing the percentage to a fraction.
 - (a) 40% of 500 kg.
 - (b) 15% of \$45.
 - (c) 85% of 1500 g.
 - (d) 70% of 30 min.
- **3.** Use the percentage key (if your calculator has one) or change to a decimal before using your calculator to find these quantities.
 - (a) 30% of 1.4 kg. (b) 18% of 7.5 m.
 - (c) 24% of 15 km. (d) 45% of 0.6 t.
- **4.** Anna earns \$850 per week. She is given a pay rise of 3%. What is the amount of the increase?
- 5. Which is the greater sum of money and by how much: $37\frac{1}{2}\%$ of \$600 or $8\frac{1}{3}\%$ of \$2580?
- **6.** Express the first quantity as a percentage of the second.
 - (a) 300 cm, 750 cm (b) 18 min, 90 min
 - (c) 15 kg, 40 kg (d) 75 t, 1000 t
 - (e) \$18, \$72 (f) 85 cm, 1 m
 - (g) 400 kg, 2 t (h) 720 mL, 2 L
 - (i) $45 \min, 4 h$ (j) $6000 m^2, 3 ha$
 - In the class there were 16 boys and 9 girls. What is the percentage composition of the class (that is, what percentage are boys and what percentage are girls)?
- **8.** Nickel silver contains 2 parts copper, 1 part zinc and 1 part nickel. What is its percentage composition?
- **9.** An artist mixed the following paint pigments to obtain the required colour of paint: 25 g white, 50 g yellow and 125 g green. Find the percentage of each pigment used.
- **10.** Calculate these percentage changes.
 - (a) Increase \$45 by 20%. (b) Increase 8 kg by 40%. (c) Increase 2.4 m by 15%.
 - (d) Decrease \$600 by 30%. (e) Decrease 40 kg by 40%. (f) Decrease 6.4 L by 60%.
- **11.** Australia exports live sheep to the Middle East but there is a fatality rate of about 4% on a normal run. If a container ship carries 8500 sheep, how many sheep survive the trip?
- **12.** If 50 L was lost through a leak and this represented 5% of a tank, find the total capacity of the tank.

To use the [%]

key on your calculator, enter the quantity first,

enter the percentage required

next, and then press the [%] key

You can do many of these questions by successive

multiplication.

- **13.** Mrs Jones received a 30% discount off the purchase price of a television set. If she saved \$240, find the marked price of the TV.
- **14.** Find 20% of 40% of \$320. Is this the same as finding 40% of 20% of \$320?
- **15.** An investor lost 20% on a falling stock market. By what percentage must the market now increase, in order to restore the investment to the original value?
- **16.** Use the unitary method to find how much cement, sand and gravel must be mixed in the ratio 1 : 2 : 3 in order to produce 16.8 cubic metres of concrete mix?
- **17.** In an exam there are 10 questions in section A and 20 questions in section B. The time allowed is 60 minutes. Divide the time for section A and B in the ratio of the number of questions.
- **18.** The 3 sides of a triangle are in the ratio 3 : 4 : 5. If the perimeter is 2640 mm, calculate the lengths of the sides.
- **19.** The golden ratio is 1.618 : 1. This means that any golden rectangle will have the ratio of its length to its width equal to the golden ratio.
 - (a) Find the length of the sides of a golden rectangle that has a perimeter of 60 cm.
 - (b) Find the perimeter of a golden rectangle with a short side of 5 cm.
- **20.** Calculate these speeds and express them in the indicated units.
 - (a) A car travels 80 km in $1\frac{1}{2}$ hour. (km/h.)
 - (b) A bushwalker walked 7 km in $3\frac{1}{2}$ hours. (km/h.)
 - (c) A snail crawls 40 cm in 5 minutes. (cm/min.)
 - (d) A plant grew 18 mm in 24 hours. (mm/h.)
- **21.** A cricketer hit 65 runs off 50 balls.
 - (a) What is his run rate in runs/ball?
 - (b) Calculate his strike rate which is expressed in runs per 100 balls.
- 22. Global warming is currently estimated to be proceeding at around 0.5° per hundred years. This rate is expected to treble next century. If an increase in global temperature of 4.5° spells disaster for the planet, how long have we got to fix it?
- **23.** \$100 AUD can be exchanged for US\$95 (American).
 - (a) What is the currency exchange rate expressed as A\$ per US\$?
 - (b) What is US\$25 worth in Australian currency?
- 24. A canoeist can paddle at 8 km/h in flat water. Today he is paddling in a river that flows at 5 km/h.
 - (a) What is his speed of paddling downstream?
 - (b) What is his speed of paddling upstream?
 - (c) He paddles 12 km downstream and returns. What is his average speed for the round trip?

1.4 Congruence

Identifying congruent shapes

Solution:

- *on:* If a figure can be superimposed on another, say by translation, rotation or reflection, or any combination of these, then they are identical. That is, they are congruent figures.
 - (a) $ABCD \equiv EFGH$ (b) $\triangle ABC \equiv \triangle DEC$ (c) $\triangle ABD \equiv \triangle CBD$

Tests for congruent triangles

The three sides test (SSS)

If three sides in one triangle are respectively equal to three sides in another triangle then the triangles are congruent (SSS).

 $\Delta ABC \equiv \Delta DEF$ (SSS).

Two sides and the included angle test (SAS)

If two sides and the *included* angle of one triangle are respectively equal to two sides and the *included* angle in another triangle then the triangles are congruent (SAS).

 $\Delta ABC \equiv \Delta PQR$ (SAS).

Two angles and a corresponding side (AAS)

If two angles and one side in one triangle are respectively equal to two angles and the *corresponding* side in another triangle then the triangles are congruent (AAS).

 $\Delta ABC \equiv \Delta WXY (AAS).$

Right angle, hypotenuse and one side (RHS)

If the hypotenuse and one other side in one right-angled triangle are respectively equal to the hypotenuse and one other side in another right-angled triangle then the triangles are congruent (RHS).

 $\Delta ABC \equiv \Delta RST (RHS).$

Congruence proofs

Example:	Prove $\triangle APQ \equiv \triangle BPQ$ given that $\triangle APB$ is an isosceles triangle with $AP = BP$.						
Solution:	In the Δs APQ and BPQ	P					
	$AP = BP$ (equal sides, isosceles Δ)						
	$\angle AQP = \angle BQP = 90^{\circ}$ (given)						
	PQ is a common side						
	$\therefore \Delta APQ \equiv \Delta BPQ (RHS)$	A Q B					

(b)

EXERCISE 1.4

Congruence

1. Which of the following diagrams show two congruent figures?

2. Which congruence test (SSS, SAS, AAS, RHS) would you use to prove the following pairs of triangles congruent?

3.

5.

So when it says event 1 or event 2,

I take the outcomes from

1.5 Chance and compound events

Simple probability

Solution:

Example: A fair, six-sided die is rolled. What is the probability of obtaining the following outcomes?

The number 4. A number less than 4. (a) (b) An even number. (d) A number less than 8. (c) $Probability = \frac{number of ways event happens}{number of points in sample space}$ $=\frac{1}{6}$ (a) $P = \frac{3}{6} = \frac{1}{2}$ (c) $P = \frac{3}{6} = \frac{1}{2}$ (b) (d)P = 1 (Must happen.)

The probability of the complementary event

- **Example:** Find the probability that a card drawn at random from a well-shuffled pack of playing cards is not a king.
- Solution: $P(\text{not king}) = 1 P(\text{king}) = 1 \frac{4}{52} = 1 \frac{1}{13} = \frac{12}{13}$

Expected number of successes

If 20 people toss a coin, the probability of a head is $\frac{1}{2}$ in each case.

We expect that on half of the occasions when a coin is tossed, it will come down heads.

Therefore we will expect $\frac{1}{2} \times 20 = 10$ heads.

Compound events

At least

Sometimes it is easier to look at what is not happening than what is actually happening.

Suppose we want to pick a number from 1 to 100 that is at least 10. That is, it is not from 1 to 9.

$$P = 1 - P(1 \text{ to } 9) = 1 - \frac{9}{100} = \frac{91}{100}.$$

At most

Similarly, if we put 10 discs numbered 1 to 10 in a bag and draw one out, what is the probability it is at most 9? If it is at most 9, then it is anything other that 10.

$$P(\text{not } 10) = 1 - P(10) = 1 - \frac{1}{10} = \frac{9}{10}.$$

Using Venn diagrams to calculate probability

A group of 60 people are surveyed to find their taste in food. **Example:** There are 39 that like burgers and 41 like Asian food. 5 people like neither. The diagram shows that 25 people like both burgers and Asian food.

If one person is selected at random, find the probability that they like:

(a)	Only burgers.	(b)	Asian food.
(c)	Both burgers and Asian food.	(d)	Only one sort of food.

Either burgers or Asian. (e)

Solution:

(a)
$$P = \frac{14}{60} = \frac{7}{30}$$
 (b) $P = \frac{41}{60}$ (c) $P = \frac{25}{60} = \frac{5}{12}$
(d) $P = \frac{30}{60} = \frac{1}{2}$ (e) $P = \frac{55}{60} = \frac{11}{12}$ (f) $P = \frac{5}{60} = \frac{1}{12}$

(f)

Neither.

Two-way tables (another way of displaying information)

Example: In a technology survey people are asked if they own a camera or not and if they own a GPS device or not. The numbers in each category can be displayed either in a Venn diagram or a two-way table.

Camera 28 G	PS		Camera owner	Non-camera owner	Totals
64 30 10	\sum	GPS owner	30	18	48
01 30 18	\square	Non-GPS	64	28	92
		Totals	94	46	140

- If one person is chosen, what is the probability they do not own a camera but do have a (a) GPS?
- If a camera owner is selected at random, what is the probability they also own a GPS? (b)
- If a non-camera owner is selected, what is the probability that they also do not own a GPS? (c)

 $P = \frac{18}{140} = \frac{9}{70}$ (b) $P = \frac{30}{94} = \frac{15}{47}$ (c) $P = \frac{28}{46} = \frac{14}{23}$ (d) $P = \frac{18}{48} = \frac{3}{8}$

(d) If a GPS owner is selected, what is the probability that they do not have a camera?

Solution:

EXERCISE 1.5

Chance and compound events

(a)

- 1. Describe these events as impossible, very unlikely, unlikely, even chance, likely, very likely or certain.
 - (a) The sun will set in the west.
 - (b) A standard die is rolled and a 6 results.
 - (c) It will rain in Broome next summer.
 - (d) An ace is the first card dealt from a deck of cards.

Year 8 Review

- (a) Next Christmas day will fall on 25 December.
- (b) A person selected at random will be left-handed.
- (c) A double-headed coin will come down tails when tossed.
- (d) The temperature in Hobart will be $> 40^{\circ}$ C on a summer day.
- The numbers 1 to 15 are written on identical cards and placed face down. A card is turned over at 3. random. Find the probability that the number is:
 - (a) An odd number.
- (b) A number divisible by 3.
- 4. The word *telephone* is spelled out by writing each letter on a separate card. The cards are then placed face down and mixed up. A card is selected at random. Find the probability that the letter is:
 - (a) The letter p.

(c) A 2-digit number.

(b) A vowel.

2.

- (c) One which appears more than once in the word.
- 5. Jim takes the four kings from the deck and places them face down on the table. He offers you a choice of any card. Find the probability that the card chosen is:
 - (a) The king of diamonds.
 - (c) The king of hearts or king of spades. (d) A picture card.

6. Tim rolls a 12-sided die with faces numbered 1 to 12. What is the probability of obtaining: (a) A 5?

- (b) A number other than 5?
- (c) A number not divisible by 4?
- 7. From a well-shuffled pack of 52 playing cards, one card is chosen at random. What is the probability that the card chosen is:
 - (a) The queen of hearts?
 - (c) Neither 4 nor 5?
 - (e) Not a heart? (f) Not a picture card?
- 8. A target shooter knows from past performance that he has hit the bullseye on 45% of shots. If the shooter fires 60 shots, how many bullseyes are expected?
- 9. A raffle ticket is drawn from a box containing 500 tickets. Find the probability that the winning ticket is numbered at least 100.
- A die is tossed. What is the probability that the number is: 10.

(a) At least 3?

(b) At most 5?

(b) Not the queen of hearts?

(d) Not a black king?

11. Two dice are thrown and the sum of the two dice is recorded. Make up a 6 by 6 grid and write down the sum of the numbers from all possible combinations. How many possible outcomes are in the sample space?

Find the probability of:

- (a) A sum of 2.
- (c) A sum > 5.
- (e) A sum of at most 6.
- (g) A sum of 6 or 8.
- (i) A unique sum.

- (b) A sum of 7.
- (d) A sum of at least 6.
- (f) A sum of 6 or 7.
- (h) An even sum.

- (d) A prime number.
- (b) A black king.

12. Calculate the probability of the event described by referring to the Venn diagram. In a retirement home there are retirees that play golf and bowls. There are also people that do no sports or other sports like

fishing. Shown here are the figures for golf, bowls and others (35). If someone is selected at random, find the probability he/she:

- (a) Plays golf.
- (b) Plays bowls.
- (c) Plays both.
- (d) Plays either golf or bowls (or both).
- (e) Plays neither golf nor bowls.
- **13.** A tour operator conducted a survey of favoured travel destinations and preferred mode of travel. If we selected one city/town from this list, what is the probability that:
 - (a) People would fly there?
 - (b) People would go there by coach?
 - (c) People would go there by either mode of travel?
 - (d) People would not fly there?
 - (e) They would only go there by coach?
 - (f) They would not go there by either mode?
- 14. Convert this Venn diagram into a two-way table. Label your rows and columns A, Not A, B and Not B.
 - (a) How many items are in the sample space?
 - (b) If one item is selected at random find the probability that it is not an A.
 - (c) If an A is selected at random, what is the probability it is not a B?
 - (d) If a B is selected at random, what is the probability it is also an A?
 - (e) If an item that is not a B is selected, what is the probability it is also not an A?
 - (f) For one selected item find P(A XOR B). (XOR = exclusive or meaning either one or the other but not both.)
- **15.** Students must study either history or geography. Complete this table and answer the questions.

	Geography	History	Totals
Male	12		
Female			38
Totals	30	50	80

- (a) What is the probability that a geography student is male?
- (b) What is the probability that a boy studies history?
- (c) What is the probability that a student picked at random studies geography?
- (d) What is the probability that a student picked at random is female?
- (e) What is the probability that a history student picked at random is female?
- (f) What is the probability that a girl picked at random studies geography?
- (g) What is the probability that a student picked at random is either a male geography student or a female history student?

Products and factors 1.6

Substitution

Since a variable stands for a number, we can substitute any number for the variables in an expression and calculate its value.

Example 1:	Find	Find the value of these expressions when $x = 5$; $y = -2$.							
	(a)	<i>x</i> + 6	(b)	<i>y</i> – 5	(c)	2y + 5	(d)	$4y^{2}$	
Solution:	(a)	<i>x</i> + 6	(b)	<i>y</i> – 5	(c)	2y + 5	(d)	$4y^{2}$	
		= 5 + 6		= -2 - 5		$= 2 \times (-2) + 5$		$= 4 \times (-2)^2$	
		= 11		= -7		= -4 + 5		$= 4 \times 4$	
						= 1		= 16	
Collecting like	term	S							
Like terms are	terms	that contain the sa	me let	ters exactly.					
Example 1:	(a)	Add 7 <i>ab</i> and 11 <i>a</i>	ıb.		(b) Add 3 <i>a</i> , 6 <i>b</i>	and 2a	η.	
Solution:	(a)	7ab + 11ab = 18a	ab		(b) $3a + 6b + 2$	a = 5a	+ 6b	
Example 2:	Simp	blify $8x + 4y + 3x + 4y + 3x + 3$	- 5 <i>y</i> .						
Solution:	8 <i>x</i> +	4y + 3x + 5y = (8x)	(+3x)	+ (4y + 5y) = 11x	+ 9y				
Multiplying va	riable	S							
Example:	Mult	iply the single vari	ables	together.					
	(a)	$4 \times 5x$			(b) $ab \times pq$			
	(c)	$3a \times (-4y) \times 7c$			(d	$)$ $-3d^2 \times (-5a)$	3)		
Solution:	(a)	$4 \times 5x = 20x$			(b) $ab \times pq = a$	bpq		
	(c)	$3a \times (-4y) \times 7c =$	=84 <i>a</i>	су	(d	$) -3d^2 \times (-5a)$	³)		
						$= 15a^3d^2$			

Applying the distributive law to the expansion of algebraic expressions

I	Expai	nd the brackets:				
((a)	4(x - 8)	(b)	3y(x-5)	(c)	-3y(5y-x)
((a)	$4(x-8) = 4 \times x - 4 \times 8 =$	= 4x –	32		
((b)	$3y(x-5) = 3y \times x - 3y \times y$	5 = 3.	xy – 15y		
((c)	$-3y(5y-x) = -3y \times 5y -$	- (-3 <i>y</i>	$(y) \times x = -15y^2 + 3xy$		

Note: The product of two negatives is +.

Example:

Solution:

Expanding brackets and collecting like terms

Example: Expand 4(x-2) - 2(x+3). 4(x-2) - 2(x+3) = 4x - 8 - 2x - 6 = 2x - 14

Solution:

Factorising algebraic expressions

Example: F

Solution:

Factorise: (a)
$$3x + 15$$
 (b) $6a + 14$
(a) $3x + 15 = 3 \times x + 3 \times 5 = 3(x + 5)$
Common factor is 3.
(b) $6a + 14 = 3 \times 2 \times a + 2 \times 7 = 2(3a - 5)$

(b)
$$6a + 14 = 3 \times 2 \times a + 2 \times 7 = 2(3a + 7)$$

Common factor is 2.

EXERCISE 1.6

Prod	ucts	and factors						-'@K-	
1.	1. Calculate the value of the following expressions if $t = 2$, $x = -3$, $y = 4$.								
	(a)	<i>x</i> + 16	(b)	<i>t</i> – 4		(c)	t + x	(d) $3x - 2$	
	(e)	2t + 3y	(f)	2t - 3x		(g)	$2y^2 + t$		
2.	Calo	culate the value of the	e foll	owing exp	pressions if	p = 3	q = 4, r = -5.		
	(a)	qr-5	(b)	pq + r		(c)	$q^2 + pr$	(d) $r^2 - 2pq$	
	(e)	$p^2 - rq$	(f)	$p^{2} + q^{2}$		(g)	$q^2 - r^2$		
3.	Add	and subtract the like	e term	ns to give	a single alg	gebrai	c term.		
	(a)	4x + 7x		(b)	9ab + 5ab		(c)	$3x^2 + 5x^2$	
	(d)	$15a^3 + 6a^3$		(e)	$7ax^2 + 2ax$	c^2	(f)	$8b^2t + 3tb^2$	
	(g)	9x-2x		(h)	10bc - 8bc	С	(i)	gx - 6gx	
	(j)	$9z^3 - 5z^3$		(k)	$5tb^3 - 2b^3t$.	(1)	$-f^3 - 4f^3$	
4.	Sim	plify these algebraic	expre	essions.					
	(a)	6a - 3a + 4a	(b)	8g-4g	-g	(c)	6by + 3by - 7by	(d) $8z^3 - z^3 + 8z^3 - z^3$	
5.	Sim	plify these algebraic	expre	essions by	adding or	subtr	acting like terms.		
	(a)	6y + 4a - 4y		(b)	7g - 7h - 3	8g	(c)	3by + 5cx - 2by	
	(d)	$3x^2 + 9y^2 + 7x^2$		(e)	7y + 6a - 4	4y + 3	3 <i>a</i> (f)	9h - 9y - 11h - 7y	
	(g)	9ax + 8xy - 2ax + 3	xy	(h)	$5x^3 + 4t^3 - $	$x^{3} -$	$5t^{3}$		
6.	Sim	plify these expression	ns by	multiply	ing the alge	braic	terms.		
	(a)	$6 \times 2y$	(b)	10 × (-4	<i>t</i>)	(c)	$6y \times b$	(d) $-8q \times (-10)$	
	(e)	$5x \times 2a$	(f)	$3a \times 5b$	$\times 4c$	(g)	$-5d \times (-7a)$	(h) $3b \times (-y) \times a$	
	(i)	$4x^2 \times 3a$	(j)	$2y^3 \times 7b^3$	2	(k)	$2a^2 \times 5b^3 \times 4c^3$	(1) $-6r \times (-2t) \times (-5f)$	

Think how you would do the

problem with

numbers.

(d) 7y(y+2)

(h) -7m(m-6)

(1) -7n(3n+2)

(c) g(g+3) - 5(g-4)(f) 2t(t-5) - 2(t+3)

(i) 8b(2b-5) - 5b(3b-1)

- 7. Write an algebraic expression for the answer to these problems.
 - (a) How many km does a car travel in $2x^2$ hours at $7y^3$ km/h?
 - (b) What is the cost of $25a^2x^3$ kg of fertiliser at $2bv^3$ per kg?
 - (c) How much fuel is pumped by a pump working at 6*t* litres per minute if it pumps for $5a^2$ minutes?
- 8. Perform these divisions.

(a)
$$\frac{8y}{4}$$
 (b) $\frac{-24b}{-8}$ (c) $\frac{40pq}{5}$

- (d) $-18x \div (-6)$ (e) $40st \div (-10)$
- 9. Simplify these expressions by expanding the brackets.
 - (a) 6(a+4)(b) 5(x-6)(c) 7(3b-2a)
 - (e) 5y(3y-2)(f) 4k(9-2k)(g) -3y(y+2)
 - (i) -4q(q-2)(i) -5d(2-d)(k) 3y(2y+3)
 - (m) -3a(5-3a)(n) -2x(8-3x)(o) 4y(2-5y)
- **10.** Calculate the area of these figures. Measurements are in centimetres.

11. Expand the brackets and collect like terms.

(a) 5(y+4) + 2(y+1)(b) 3(g-2) + 2(g+3)(c) 9(b-2) + 3(b-1)(d) 4(a+3) - 2(a+1)(e) 4(g-5) - 3(g-2)(f) 2(t-5) - 2(t+3)(g) a(a+3) + 4(a+2)(h) g(g-5) + 3(g-2)(i) t(t-5) + 2(t+3)Expand the brackets and collect like terms.

12.

- (a) y(y+4) 2(y+1)(b) x(x-6) - 3(x-2)
- (d) y(3y+5) + 3(2y+4)(e) g(2g-5) + 3(g-2)
- (g) 5a(2a+1) + 3a(4a+3)(h) 3g(2g-5) + 2g(g-2)

Factorise these expressions by finding the highest common factor. 13.

(a)
$$5x + 15$$
 (b) $16a^2 + 8$ (c) $18t - 6$ (d) $6k - 21$ (e) $28 - 35g$

14. Verify these factors by checking that a substituted variable produces the same value. The first one is done for you.

Substitution	Expression	Factors	Value	Expression	Value
<i>x</i> = 2	30 <i>x –</i> 24	6(5 <i>x</i> – 4)	$6\times(5\times2-4)=36$	30x – 24	30 × 2 – 24 = 36
<i>y</i> = 3	40 <i>y</i> + 8			40 <i>y</i> + 8	
<i>z</i> = 4	16z – 8			16z – 8	
t = 2	15t ² – 12			15 <i>t</i> ² – 12	

15. Factorise these expressions by taking out the highest common factor.

(a) $k^3t + k^2t^2$ (b) pqr - pqt(d) $15en^3 + 12e^2n^2$ (e) 12abc - 18abz (c) $mnp^3 - m^2np$ (f) $6gk^3t - 9g^2kt$

Here is an example. $6a^3x + 2a^2x^5$ $=2a^{2}x(3a+x^{4})$

1.7 Special quadrilaterals

Recognising and naming quadrilaterals

A quadrilateral is a plane shape with four straight sides. There are many special quadrilaterals with additional properties, but all quadrilaterals are described by the given definition.

Properties of convex quadrilaterals

- Four unequal sides.
- Each internal angle < 180°.
- No sides necessarily equal.
- No angles necessarily equal.
- No necessary symmetry.
- Diagonals meet inside the quadrilateral.

Non-convex quadrilaterals

Properties of non-convex quadrilaterals

- One angle $> 180^{\circ}$.
- No sides necessarily equal.
- No angles necessarily equal.
- No symmetry necessary.
- One of the diagonals must be produced (extended) in order for them to meet (outside the quadrilateral).

The angle sum of any quadrilateral is 360°.

Trapezium: (Trapezoid in USA) A trapezium is a quadrilateral with 1 pair of opposite sides parallel. There is a special class of trapezium called an isosceles trapezium, which has the non-parallel pair of sides equal.

Properties of trapeziums

- All trapeziums are convex quadrilaterals.
- A trapezium has 2 opposite sides parallel.
- An isosceles trapezium has 2 non-parallel equal sides.
- Whereas in general a trapezium has no axis of symmetry, an isosceles trapezium has 1 axis of symmetry.

Parallelogram: A parallelogram is a quadrilateral with both pairs of opposite sides parallel.

Properties of parallelograms

- Both pairs of opposite sides are parallel.
- Both pairs of opposite sides are equal.
- Both pairs of opposite angles are equal.
- The diagonals bisect each other.
- A parallelogram has rotational symmetry of order 2.

Rhombus: A parallelogram with adjacent sides equal.

Rectangle: A parallelogram with at least 1 right angle.

Rhombuses and rectangles are all parallelograms

Properties of rectangles and rhombuses

Rectangle:

- Diagonals are equal.
- All angles are right angles.
- Two axes of symmetry parallel to the sides.
- Rotational symmetry of order 2.

Rhombus:

- Diagonals are perpendicular.
- All sides are equal.
- Two axes of symmetry along the diagonals.
- Rotational symmetry of order 2.
- Diagonals bisect the angles.

Square: A square is a quadrilateral with all of the properties of a rhombus and a rectangle together.

Like a rhombus, a square has:

- All 4 sides equal.
- Diagonals are perpendicular.
- The diagonals are axes of symmetry.

Like a rectangle, a square has:

- All angles are right angles.
- Diagonals are equal.
- Two axes of symmetry parallel to the sides.

Kite: A kite is a quadrilateral with 2 pairs of adjacent sides equal. A kite has some properties of a rhombus.

Like a rhombus, a kite has:

- Diagonals perpendicular.
- Two pairs of adjacent side equal.
- One diagonal axis of symmetry.

However, unlike a rhombus, a kite is not a parallelogram.

The Carroll diagram shows that all rectangles are parallelograms, while all kites are not. Rhombuses may be regarded as parallelograms or kites, while squares are specialised rectangles, rhombuses or kites.

EXERCISE 1.7

Special quadrilaterals

1. Identify the figures that are quadrilaterals and categorise them as *convex* or *non-convex* quadrilaterals.

2. Write down the name of each quadrilateral in the diagram (there may be more than one). *Hint*: How many quadrilaterals in the diagram?

Answers

Chapter 1 Year 8 Review

Getting started

1 D 2 C 3 B 4 B 5 C 6 C 7 B 8 A 9 B 10 D 11 C 12 A

1.1 Using the four operations with integers and rational numbers and using index notation with numbers

1 (a) -6 (b) -2 (c) -35 (d) -3 (e) 14 (f) 4 (g) 6 (h) -1442 (a) 16 (b) 64 (c) 121 (d) 0.09 (e) -27 (f) -64 (g) 1 (h) 1250 **3** (a) -3.6 (b) 3.3 (c) -0.44 (d) -0.93 (e) -0.4 (f) 0.4 (g) 0.16 (h) -0.008 **4** (a) $-\frac{1}{12}$ (b) $\frac{3}{10}$ (c) $\frac{16}{25}$ (d) $\frac{27}{64}$ (e) $-\frac{1}{6}$ (f) $-\frac{21}{4}$ or $-5\frac{1}{4}$ (g) $\frac{27}{16}$ or $1\frac{11}{16}$ (h) $-\frac{16}{15}$ or $-1\frac{1}{15}$ **5** (a) 6 (b) 18 (c) $x = \pm 16$ (d) $y = \pm 9$ **6** -22 **7** -5 and -6 **8** (a) 8 (b) 81 (c) -32 (d) -125 (e) 64 (f) -10 000 000 **9** (a) 2^4 (b) 6^2 (c) $(-2)^3$ (d) $(-10)^3$ **10** (a) 50 (b) 44 (c) -31 (d) 36 (e) 13 **11** (a) 5^{10} (b) 3^{50} (c) 8^2 (d) 2^4 (e) 17^2 **12** (a) 2^{15} (b) 3^8 (c) 10^{12} (d) 5^{198} (e) 3^9 **13** (a) 2^8 (b) 16^2 (c) 2^4 (d) 4^{50} (e) 10^4 **14** (a) 1 (b) 2^{198} (c) 7^6 (d) 10^{12} **15** (a) 2048 (b) 1024 (c) 8 (d) 4096 (e) 16

1.2 Working with real numbers - rational and irrational

1 (a) 0.5 (b) 0.25 (c) 0.2 (d) 0.375 (e) 0.3 (f) 0.142857 (g) 0.2 (h) 0.83 **2** (a) $\frac{3}{5}$ (b) $\frac{6}{25}$ (c) $\frac{5}{8}$ (d) $\frac{7}{80}$ (e) $\frac{1}{400}$ **3** (a) $\frac{8}{9}$ (b) $\frac{53}{99}$ (c) $\frac{6}{11}$ (d) $\frac{541}{999}$ (e) $\frac{334}{3333}$ **4** (a) $\frac{8}{15}$ (b) $\frac{5}{12}$ **5** (a) 0.09 (b) 0.18 (c) 0.27 (d) 0.36. Two-digit repeating decimals with the digits formed by multiplying numerator by 9. **6** (a) 0.076923 (b) 0.153846 (c) 0.230769 (d) 0.307692 7 (a) See Questions 5 and 6. (b) Yes (c) nine **8** (a) 1 (b) 1 (c) 1.5 (d) -0.25 (e) 1.375 (f) 1.429688, 1.407685 (1.41) Yes. **9** (a) Irrational (b) Rational (c) Rational (d) Irrational 10 (a) Irrational (b) Irrational (c) Rational (d) Irrational (e) Rational (f) Irrational (g) Irrational (h) Rational (i) Irrational (j) Rational 11 Diameter **12** D

1.3 Calculating percentage change, ratio and rates

1 (a) \$37.50 (b) \$315 mL (c) 210 cm (d) 4.32 L 2 (a) 200 kg (b) \$6.75 (c) 1275 g (d) 21 min 3 (a) 0.42 kg (b) 1.35 m (c) 3.6 km (d) 0.27 t 4 \$25.50 5 $37\frac{1}{2}$ % of \$600 by \$10 6 (a) 40% (b) 20% (c) 37.5% (d) 7.5% (e) 25% (f) 85% (g) 20% (h) 36% (i) 18.75% (j) 20% 7 64% boys, 36% girls 8 50% copper, 25% zinc, 25% nickel 9 12.5% white, 25% yellow, 62.5% green 10 (a) \$54 (b) 11.2 kg (c) 2.76 m (d) \$420 (e) 24 kg (f) 2.56 L 11 8160 12 1000 L 13 \$800 14 \$25.60. Yes. 15 25% 16 2.8 m³ cement, 5.6 m³ sand, 8.4 m³ gravel 17 20 min A, 40 min B 18 660 mm, 880 mm, 1100 mm 19 (a) 11.46 cm, 18.54 cm (b) 26.18 cm 20 (a) $53\frac{1}{3}$ km/h (b) 2 km/h (c) 8 cm/min (d) 0.75 mm/h 21 (a) 1.3 runs/ball (b) 130 22 300 years 23 (a) A\$1.053 (b) A\$26.32 24 (a) 13 km/h (b) 3 km/h (c) 4.875 km/h

1.4 Congruence

1 a, b, d **2** (a) SSS (b) RHS (c) AAS (d) SAS (e) SAS (f) SSS **3** (a) No, angle not included. (b) No, not corresponding side. (c) Yes, SAS **4** (a) \triangle ABC, \triangle HIG (RHS) (b) \triangle ABC, \triangle IGH (SSS) (c) \triangle ABC, \triangle IGH (AAS) (d) \triangle ABC, \triangle GHI (SAS) (e) \triangle ABC, \triangle DFE, \triangle IHG (AAS) (f) \triangle ABC, \triangle FED, \triangle GHI (AAS) **5** AP = BP (given), CP = DP (given), \angle APC = \angle BDP (vertically opposite angles equal), $\therefore \triangle$ ACP = \triangle BDP (SAS). \therefore AC = BD

1.5 Chance and compound events

 $1 (a) Certain (b) Unlikely (c) Very likely (d) Very unlikely 2 (a) 1 (b) 0 to 0.5 (c) 0 (d) 0 to 0.5 3 (a) <math>\frac{8}{15}$ (b) $\frac{1}{3}$ (c) $\frac{2}{5}$ (d) $\frac{2}{5}$ 4 (a) $\frac{1}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ 5 (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (d) 1 6 (a) $\frac{1}{12}$ (b) $\frac{11}{12}$ (c) $\frac{3}{4}$ 7 (a) $\frac{1}{52}$ (b) $\frac{51}{52}$ (c) $\frac{11}{13}$ (d) $\frac{25}{26}$ (e) $\frac{3}{4}$ (f) $\frac{10}{13}$ 8 27 9 $\frac{401}{500}$ 10 (a) $\frac{2}{3}$ (b) $\frac{5}{6}$ 11 36 (a) $\frac{1}{36}$ (b) $\frac{1}{6}$ (c) $\frac{13}{18}$ (d) $\frac{13}{18}$ (e) $\frac{5}{12}$ (f) $\frac{11}{36}$ (g) $\frac{5}{18}$ (h) $\frac{1}{2}$ (i) $\frac{1}{18}$ 12 (a) $\frac{29}{80}$ (b) $\frac{21}{16}$ (c) $\frac{1}{16}$ (d) $\frac{9}{16}$ (e) $\frac{7}{16}$ 13 (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{3}{14}$ (d) $\frac{1}{2}$ (e) $\frac{2}{7}$ (f) $\frac{3}{14}$ 14 (a) 180 (b) $\frac{2}{5}$ (c) $\frac{4}{9}$ (d) $\frac{10}{17}$ (e) $\frac{5}{13}$ (f) $\frac{1}{2}$ 15 (a) $\frac{2}{5}$ (b) $\frac{5}{7}$ (c) $\frac{3}{8}$ (d) $\frac{19}{40}$ (e) $\frac{2}{5}$ (f) $\frac{9}{19}$ (g) $\frac{2}{5}$

	Geography	History	Totals
Male	12	30	42
Female	18	20	38
Totals	30	50	80