

Biology Maintaining a Balance

New Revised Edition

Kerri Humphreys

Contents

Use the table of contents to record your progress through this book. As you complete each topic, write the date completed, then tick one of the three remaining columns to guide your revision for later. The column headers use the following codes:

?? = Don't understand this very well at all.

RR = Need to revise this.

OK = Know this.

	Торіс	Page	Date done	??	RR	OK		Торіс	Page	Date done	??	RR	ОК
	Introduction	1					17	Experiment – Carbon Dioxide and pH	23				
	Verbs To Watch	1					18	Technology to Measure Oxygen and Carbon Dioxide Concentrations	24				
1	Assumed Knowledge	2					19	Donated Blood and Artificial Blood	25				
2	Enzymes	3					20	Blood Vessels	26				
3	Enzymes and Reactions	4					21	Changes in Blood Composition	28				
4	Experiment – Enzyme Activity and pH	5					22	Transport within Plants	30				
5	Experiment – Enzyme Activity and Temperature	6					23	Experiment – Longitudinal and Transverse Sections of Xylem and Phloem	32				
6	Experiment – Enzyme Activity and Substrate Concentration	7					24	Excretion, Respiration and Water	33				
7	Homeostasis	8					25	The Kidney	34				
8	The Role of the Nervous System	9					26	Osmosis and Diffusion	36				
9	Feedback Mechanisms	10					27	Renal Hormones	37				
10	Homeostasis and Temperature Control	11					28	Renal Dialysis	38				
11	Australian Endotherms and Ectotherms and Temperature Control	12					29	Excretion in Other Organisms	39				
12	Plants and Temperature Change	14					30	Plants and Water Loss	41				
13	Blood	16					31	Mangroves and Enantiostasis	42				
14	Experiment – Scaled Diagram of Blood Cells	18					32	Estuaries	43				
15	Haemoglobin	19					33	Experiment – Structures in Plants for Water Conservation	44				
16	Play – In the Blood	20					Тор	ic Test	45				
							Ans	wers	48				

© Science Press 2010 First published 2003 Revised Edition 2010

Science Press Bag 7023 Marrickville NSW 1475 Australia Tel: (02) 9516 1122 Fax: (02) 9550 1915 sales@sciencepress.com.au www.sciencepress.com.au All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Science Press. ABN 98 000 073 861

Introduction

Each book in the *Surfing* series contains a summary, with occasional more detailed sections, of all the mandatory sections of the syllabus, along with questions and answers.

It is envisaged this book will be useful in class for both initial understanding and revision, while the more traditional textbook can remain at home for more detailed analysis.

All types of questions – multiple choice, short response, structured response and free response – are provided. Questions are written in exam style and use the verbs specified by the Board of Studies so that you will become familiar with the concepts of the topic and answering questions in the required way.

Answers to all questions are included.

A topic test at the end of the book contains an extensive set of summary questions, including multiple choice and free response questions. These cover every aspect of the topic, and are useful for revision and exam practice. Marking guidelines are supplied where appropriate.

Verbs To Watch

account, account for	
	an account of, narrate a series of
	events or transactions.
analyse	Identify components and the
	relationships among them, draw out
	and relate implications.
apply	Use, utilise, employ in a particular
	situation.
appreciate	Make a judgement about the value
	of something.
assess	Make a judgement of value, quality,
	outcomes, results or size.
calculate	Determine from given facts, figures
	or information.
clarify	Make clear or plain.
classify	Arrange into classes, groups or
e	categories.
compare	Show how things are similar or
	different.

construct	Make, build, put together items or						
contrast	arguments. Show how things are different or						
opposite. critically (analyse/evaluate) Add a degree or level							
of accuracy, depth, knowledge and							
	understanding, logic, questioning,						
	reflection and quality to an analysis						
	or evaluation.						
deduce	Draw conclusions.						
define	State the meaning of and identify						
	essential qualities.						
demonstrate	Show by example.						
describe	Provide characteristics and features.						
discuss	Identify issues and provide points						
	for and against.						
distinguish	Recognise or note/indicate as being						
	distinct or different from, note						
	difference between things.						
evaluate	Make a judgement based on criteria.						
examine	Inquire into.						
explain	Relate cause and effect, make the						
	relationship between things evident,						
	provide why and/or how.						
extract	Choose relevant and/or appropriate						
outropolato	details. Infer from what is known.						
extrapolate identify	Recognise and name.						
interpret	Draw meaning from.						
investigate	Plan, inquire into and draw						
mvestigate	conclusions about.						
justify	Support an argument or conclusion.						
outline	Sketch in general terms; indicate the						
	main features.						
predict	Suggest what may happen based on						
1	available information.						
propose	Put forward a point of view, idea,						
	argument, suggestion etc for consid-						
	eration or action.						
recall	Present remembered ideas, facts or						
	experiences.						
recommend	Provide reasons in favour.						
recount	Retell a series of events.						
summarise	Express concisely the relevant						
	details.						
synthesise	Put together various elements to						
	make a whole.						

1 Assumed Knowledge

- 1. What is a protein?
- 2. Identify the elements that are present in all proteins.
- 3. Outline the general function of proteins.
- 4. What is pH?
- 5. Use pH values to identify acid, neutral and alkaline solutions.
- 6. What is meant by the term 'metabolism'?
- 7. What is a catalyst?
- 8. Distinguish between the internal and external environment of an organism.
- 9. Define receptor and effector.
- 10. List the five main senses found in animals.
- 11. Figure 1.1 shows most of the sense receptors found in the skin.

Figure 1.1 Senses in the skin.

Identify the different types of receptors found in the skin.

- 12. What is interstitial fluid?
- 13. Distinguish between an endotherm and an ectotherm.
- 14. Outline the function of the nervous system.
- 15. The nervous system is often divided into the central nervous system and the peripheral nervous system. Compare these two systems.
- 16. What is meant by ambient temperature?
- 17. Describe the function of the circulatory system.
- 18. Figure 1.2 shows cellular components found in blood.

Figure 1.2 Blood cells.

Outline the function of each of the three types of cellular components shown in Figure 1.2.

- 19. Define artery, vein and capillary.
- 20. The following diagram shows a cross-section of the human brain.

Figure 1.3 Cross-section of human brain.

Outline the function of the spinal cord and cerebrum.

- 21. Define diffusion.
- 22. Figure 1.4 shows gas exchange in the lung.

Describe the movement of gases in and out of the alveoli of the lungs.

- 23. State the function of xylem and phloem in plants.
- 24. The following diagram shows the distribution of body water.

Total body water (50-70% of body mass)

Figure 1.5 Distribution of body water.

Describe why water is an important molecule in organisms.

2 Enzymes

Enzymes are biological catalysts, that is, they are organic compounds and speed up reactions. Enzymes control specific reactions, often working in 'teams' with each controlling a certain step until the final product(s) appear. Enzymes act on a specific substrate to either break them down into simpler substances or to synthesise something more complex.

Enzymes bind to the substrate forming an enzymesubstrate complex. The active site of an enzyme can distinguish its substrate from closely related molecules and this makes enzymes highly specific for different substrates. This binding is often called the '**lock-andkey mechanism**'. The active site on the enzyme is often a surface groove which perfectly fits the substrate and brings the active sites of the chemicals involved into alignment so that the chemical reaction can occur more quickly.

Figure 2.1 Lock-and-key mechanism of an enzyme and its substrate.

The activity of enzymes is affected by the amount of substrate present, temperature, pH, presence of coenzyme or cofactor, presence of heavy metals and availability of energy.

If there is an increase in substrate, the rate of the reaction will increase until all the active sites of the enzyme are occupied. This is the maximum rate at which the reaction can occur, according to substrate concentration and is known as the **saturation point**.

The lock-and-key mechanism explains why enzymes are denatured at high temperatures – their surface shape alters so that the substrate can no longer bind with the enzyme and reactivity is lost. The hydrogen bonds in proteins are broken by high temperatures and this disrupts their threedimensional shape.

Coenzymes are non-protein molecules which need to be present before an enzyme can function. They take part in the reaction and are changed by it, e.g. vitamins and ATP.

Cofactors are mineral ions that need to be present to help activate the enzyme. They are not changed by the reaction, e.g. potassium ions and magnesium ions.

- 1. Identify the role of enzymes in living organisms.
- 2. Outline the chemical composition of enzymes.
- 3. What is the 'substrate'?
- 4. Draw a simple diagram to explain enzyme specificity on a substrate.
- 5. Discuss why the enzyme-substrate binding is often referred to as the 'lock-and-key' mechanism.
- 6. List the factors that influence the activity of enzymes.
- 7. Name one enzyme and state how its activity is influenced by each of the following.
 - (a) Increased temperature.
 - (b) Change in pH.
 - (c) Change in substrate concentration.
- 8. Define saturation point.
- 9. Explain why enzymes denature at high temperatures.
- 10. Which of the following best describe enzymes?
 - (A) Control all the chemical reactions in the body's metabolism.
 - (B) Speed up reactions and are consumed by the reaction.
 - (C) Decrease the rate of the reaction.
 - (D) Enable a reaction to occur which would not normally proceed without the enzyme.
- 11. The enzyme ATP synthase is found on the inner membrane of a mitochondrion and is responsible for ATP synthesis. The antibiotic oligomycin inhibits ATP synthase. Which of the following is a factor which would *not* inhibit the functioning of this enzyme?
 - (A) Increasing the temperature.
 - (B) Lowering pH.
 - (C) Addition of heavy metals.
 - (D) Increasing concentration of ADP.
- 12. In 1894 Emil Fischer, a German chemist, proposed the lock-and-key model for enzymes. What does this model propose?
 - (A) The overall shape of an enzyme is the same as the overall shape of the substrate.
 - (B) Enzymes attach to the substrate by fitting into its shape.
 - (C) Enzymes are inserted and added to the substrate molecule.
 - (D) The substrate and enzyme aggregate to form a large inactive complex with locked properties.