
NATIONAL MATIONAL MATHS

YEAR 7

Science Press

© Science Press 2014 First published 2014

Science Press Private Bag 7023 Marrickville NSW 1475 Australia Tel: (02) 9516 1122 Fax: (02) 9550 1915 sales@sciencepress.com.au www.sciencepress.com.au All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Science Press. ABN 98 000 073 861

Contents

NUMB	ER AND ALGEBRA • NUMBER AND PLACE VALUE		
Chap	ter 1 The Laws of Arithmetic	1	
	ng started	2	
1.1	Applying the associative and commutative laws	3	
1.2	Operating with whole numbers	8	
1.3	Solving number puzzles	11	
1.4	Using the number line to order numbers	16	
1.5	Integers	17	
1.6	Adding and subtracting integers	22	
1.7	Order of operations and the distributive law	27	
1.8	The language of mathematics	30	
1.9	Miscellaneous extension exercise	32	
How	much do you know?	34	
	ter 1 Diagnostic test	37	
	ED AND ALGERDA ANNADED AND DIAGE VALUE		
	ER AND ALGEBRA • NUMBER AND PLACE VALUE		
	ter 2 Factors and Prime Numbers	39	
	ng started	40	
2.1	Special numbers	41	
2.2	Factors and multiples of numbers	49	
2.3	Prime numbers and composite numbers	52	
2.4	Highest common factor and lowest	56	
	common multiple		
2.5	Tests for divisibility	58	
2.6	Extension: Exploring Fibonacci numbers	61	
	much do you know?	64	
Chap	ter 2 Diagnostic test	66	
NUMB	ER AND ALGEBRA • FLUENCY AND PROBLEM SOLVING		
Chap	ter 3 Problem Solving	67	
	ng started	68	
3.1	Solve a simpler problem	69	
3.2	The unitary method and make a table of values	73	
3.3	Draw a diagram, look for a pattern,	76	
	invent your own numbers		
3.4	Make a list and look for a pattern	80	
3.5	Counting techniques and logic problems	86	
3.6	Miscellaneous extension exercise	91	
How	much do you know?	94	
	ter 3 Diagnostic test	96	
NUMB	ER AND ALGEBRA • REAL NUMBERS		
	ter 4 Fractions	97	
	ng started	98	
4.1	Comparing fractions using equivalence	99	
4.2	Improper fractions and mixed numbers	104	
4.3	Adding and subtracting fractions	107	
4.4	Adding and subtracting mixed numbers	110	
4.5	Multiplying and dividing fractions	112	
7.5	and mixed numbers	112	
4.6	Problem solving with fractions	116	
4.7	Miscellaneous extension exercise	117	
	much do you know?	118	
•			
Chapt	ter 4 Diagnostic test	121	

NUME	BER AND ALGEBRA • REAL NUMBERS	
Chap	oter 5 Decimals, Percentages and Ratios	123
	ng started	124
5.1	Multiplying decimals	125
5.2	Dividing decimals	128
5.3	Rounding decimals to a given number of places	131
5.4	Connecting fractions and percentages	134
5.5	Connecting decimals and percentages	138
5.6	Extension: Applying strategies to	141
	solve unfamiliar problems	
5.7	Simple ratios	145
5.8	Ratios with fractions, decimals	149
11	and percentages	450
	much do you know?	153
Cnap	oter 5 Diagnostic test	155
	STICS AND PROBABILITY • CHANCE	
	oter 6 Probability	157
	ng started	158
6.1	Ordering simple events from least likely to most likely	159
6.2	Determining experimental probability	162
6.3	Assigning probabilities to the outcomes	167
, ,	of events	474
6.4	Solving problems involving probability	171
الميد	and Venn diagrams much do you know?	175
	oter 6 Diagnostic test	173
Спар	nei o Diagnostic test	177
	BER AND ALGEBRA • PATTERNS AND ALGEBRA	
	eter 7 Algebra	179
	ng started	180
7.1	Using letters to represent numbers	181
7.2	Creating and evaluating algebraic expressions	184
7.3	Applying the laws of arithmetic to simplify algebraic expressions	189
7.4	Using the four arithmetic operations	192
	with algebra	
7.5	Using grouping symbols in algebra	197
7.6	Adding and subtracting algebraic quantities	200
7.7	Using algebraic symbols in other contexts	204
7.8	Miscellaneous extension exercise	206
	much do you know?	207
	oter 7 Diagnostic test	209
	ION PAPERS FOR CHAPTERS 1 TO 7	
	oter 8 Revision Papers for Chapters 1 to 7	211
	ion paper 1	211
	ion paper 2	215
	ion paper 3	218
	1 1 2 2	

MEASU	REMENT AND GEOMETRY . USING UNITS OF MEASUR	EMENT	MEASU	JREMENT AND GEOMETRY • GEOMETRIC REASONING	G
Chapt	er 9 Perimeter and Area	221	Chap	ter 14 Geometry	345
	g started	222		ng started	346
9.1	Length	223	14.1	-	347
9.2	Perimeter	230	14.2		351
9.3	Area	235	14.3		356
9.4	Areas of rectangles, triangles and	237		quadrilaterals and polygons	
	parallelograms		14.4		363
9.5	Area conversions	243		side and angle properties	
9.6	Problem solving with areas and perimeters	244	14.5	Using compasses to bisect intervals	366
9.7	Miscellaneous extension exercise	247	14.0	and angles	000
	nuch do you know?	250	14.6		370
	er 9 Diagnostic test	253	14.0	specifications	0,70
Chapt	er / Blaghostic test	200	14.7	·	371
NUMBE	R AND ALGEBRA • MONEY AND FINANCIAL MATHE	MATICS	1 4.7	and co-interior angles associated	07 1
Classia	40 M CCT I D+ D	255		with parallel lines	
	er 10 Money, GST and Best Buys	255	14.8	Describing special quadrilaterals	379
	g started	256	14.9		384
10.1	Reviewing percentages	257		much do you know?	385
	The goods and services tax (GST)	258		ter 14 Diagnostic test	390
10.3	Best buys	263	Спар	ter 14 Diagnostic test	370
10.4	Miscellaneous extension exercise	265	STATIS	TICS AND PROBABILITY • DATA REPRESENTATION AN	ID.
	nuch do you know?	266		PRETATION	
Chapt	er 10 Diagnostic test	269	Chan	ter 15 Data	393
NATA CLIE	DENIENT AND CEONIETTS - LOCATION AND TRANSCEODS	IATIONIC			394
IVIEASUR	REMENT AND GEOMETRY • LOCATION AND TRANSFORM			ng started	395
Chapt	er 11 Transformations	271		Collecting and classifying data	
Gettin	g started	272	15.2	1 7 3	400
11.1	Translation	273	15.3	, , ,	403
11.2	Reflection	279	45.4	graphs, pie charts and bar graphs	400
11.3	Rotation	284	15.4	1 7 5	408
11.4	Enlargement and reduction	290	45.5	dot plots and frequency histograms	440
11.5	Identifying line symmetry and	294	15.5		413
	rotational symmetry		4= 4	median, mode and range	
11.6	Solving geometrical problems	299	15.6	Using spreadsheets to tabulate	422
	with transformations			and graph data	
How n	nuch do you know?	301	15.7	Miscellaneous extension exercise	426
	er 11 Diagnostic test	303		much do you know?	428
			Chap	ter 15 Diagnostic test	430
NUMBE	R AND ALGEBRA • LINEAR AND NON-LINEAR RELATION	NSHIPS	DEVICE	ON PAPERS FOR CHAPTERS 1 TO 15	
Chapt	er 12 Equations	305			
_	g started	306		ter 16 Revision Papers for Chapters 1 to 15	433
12.1	Solving equations by inspection	307		on paper 4	434
12.2	Solving equations by the balance method	308		on paper 5	438
	Using backtracking to solve equations	310	Revisi	ion paper 6	442
12.4	Solving problems by using an equation	312			
12.5	Miscellaneous extension exercise	313			
	nuch do you know?	315	Appe	endices	447
	er 12 Diagnostic test	317		RA syllabus map	448
Спарт	er 12 Blagnostic test	317		ing program	449
MEASU	REMENT AND GEOMETRY • USING UNITS OF MEASUR	EMENT		to use Geogebra	454
			Grid		458
-	er 13 Volume	319		·	
	g started	320	Answ	rers	459
13.1	Identifying 3-dimensional shapes	321	Gloss	arv	493
13.2	Drawing nets of solids	325		•	
13.3	Drawing different views of solids	328	Index		497
13.4	Drawing solids from different perspectives	332			
13.5	Calculating volumes of rectangular prisms	335			
13.6	Capacity	338			
13.7	Miscellaneous extension exercise	340			
How n	nuch do you know?	342			
Chant	er 13 Diagnostic test	344			

Chapter 1 The Laws of Arithmetic

Syllabus

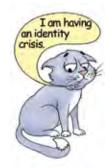
Apply the associative, commutative and distributive laws to aid mental and written computation. (ACMNA151)

Compare, order, add and subtract integers. (ACMNA280)

KEY SKILLS AND KNOWLEDGE

By the end of this chapter you should be able to:

- Use the associative and commutative laws for addition. (1.1)
- Use the associative and commutative laws for multiplication to aid calculation. (1.1)
- Use an appropriate non-calculator method to divide 2-digit and 3-digit numbers by a 2-digit number. (1.2)
- Check estimates of answers obtained by written methods with a calculator. (1.2)
- Solve number puzzles such as magic squares and arithmagons. (1.3)
- Compare different numbers for size and plot them on a number line. (1.4)
- Plot both positive and negative numbers on a number line. (1.5)
- Add and subtract both positive and negative numbers. (1.6)
- Perform mathematical operations in the correct order and use the distributive law. (1.7)
- Use basic mathematical symbols. (1.8)



WHO AM I?

I am an integer between 10 and 99.

The sum of my digits is 7.

I am even.

My units digit is one greater than my tens digit. Who am I?

1.3 Solving number puzzles

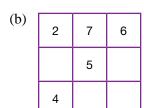
Magic squares

A **magic square** is one in which all the rows, columns and diagonals have the same sum.

For example, the magic square shown is of the order 3 (3 columns, 3 rows) and has the 'magic' number 15.

The Lo-Shu (scroll from the River Lo) square first appeared on an ancient Chinese tablet in 2200 BCE, in the reign of Emperor Yu, and is the earliest record of a magic square. In legend, it is said to have appeared in dots on a tortoise's shell following a flood.

4	9	2
3	5	7
8	1	6

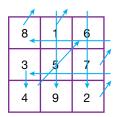

EXERCISE 1.3

Solving number puzzles

1. Complete these magic squares.

(a)	4		8
		7	
			10

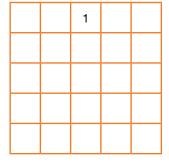
(c)	20	15	22
	21		



(d)		3	8
		5	
	2		

2. Use each of the numbers 1, 2, 3, ... 16 once only to complete this 4×4 magic square.

Hint: What is the sum of all the integers from 1 to 16? What is the sum of one row or column?


		7	
15			
9	5	16	
8		1	13

Here is a method for completing odd-sided magic squares.

- 1. Start at the top in the middle with 1.
- 2. Move diagonally up to the right for the next number.
- 3. If you move outside the square, slide to the far end of the adjacent column or row.
- 4. If rules 2 and 3 don't apply then go below the current square.
- 3. Have a go at completing this 5×5 magic square with the numbers from 1 to 25 using the above method.

Try a 7×7 square now you know how easy it is.

9

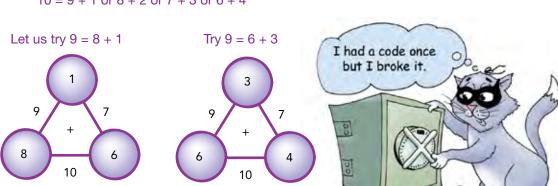
10

Arithmagons

Example: Find the missing numbers, given that all the numbers on the

vertices of the triangle add up to the number given on the line

joining them.


Solution: We could use the guess and check strategy.

 $8 + 6 \neq 10$

Now
$$9 = 8 + 1$$
 or $7 + 2$ or $6 + 3$ or $5 + 2$ or $4 + 5$

$$7 = 6 + 1 \text{ or } 5 + 2 \text{ or } 4 + 3$$

$$10 = 9 + 1 \text{ or } 8 + 2 \text{ or } 7 + 3 \text{ or } 6 + 4$$

6 + 4 = 10

Chapter 4 Fractions

Syllabus

Compare fractions using equivalence. Locate and represent fractions and mixed numerals on a number line. (ACMNA152)

Solve problems involving addition and subtraction of fractions, including those with unrelated denominators. (ACMNA153)

Multiply and divide fractions using efficient written strategies and digital technologies. (ACMNA154)

Express one quantity as a fraction of another, with and without the use of digital technologies. (ACMNA155)

KEY SKILLS AND KNOWLEDGE

By the end of this chapter you should be able to:

- Find equivalent fractions. (4.1)
- Write fractions with the same denominator to enable addition and subtraction. (4.1)
- Reduce a fraction to its simplest equivalent form by cancelling. (4.1)
- Express improper fractions as mixed numbers and vice versa. (4.2)
- Locate fractions and mixed numbers on a number line. (4.2)
- Express one quantity as a fraction of another. (4.2)
- Add and subtract fractions. (4.3)
- Add and subtract mixed numbers using written and calculator methods. (4.4)
- Subtract a fraction from a whole number. (4.4)
- Solve problems involving addition and subtraction of fractions. (4.4)
- Multiply and divide fractions and mixed numbers. (4.5)
- Solve problems involving fractions. (4.6)

INVESTIGATION

Take a simple sum of fractions, say $\frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$.

Now investigate the possibility of finding two other fractions in their lowest terms (not twelfths) which sum to $\frac{7}{12}$.

GROUP ACTIVITY

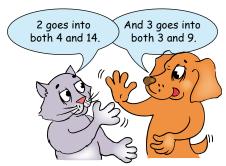
Ask two people in a group to nominate one fraction each between zero and one.

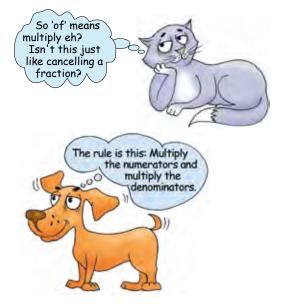
Find any other fraction that lies between the two nominated fractions (see Exercise 4.3 Question 9). You can use a calculator with a fraction key to help you. Now take the new (middle) fraction and find another fraction which lies between this one and the previous lower fraction. Keep passing the answer around the group, always finding a fraction between the new one and the smaller of the original two fractions. Answer this question: 'How many fractions lie in between any given pair of fractions?'

4.5 Multiplying and dividing fractions and mixed numbers

Example 1: Finding a fraction of a quantity.

Find
$$\frac{2}{3}$$
 of 12. This means $\frac{2}{13} \times 12^4 = 8$


Example 2: Multiplying fractions


(finding a fraction of a fraction).

$$\frac{2}{3} \times \frac{4}{5} = \frac{2 \times 4}{3 \times 5} = \frac{8}{15}$$

Example 3: Multiplying with cancelling.

$$\frac{\cancel{4}}{\cancel{9}}_3^2 \times \frac{\cancel{3}}{\cancel{14}}_7^1 = \frac{2}{21}$$

Using a calculator

We can use a fraction calculator to multiply $1\frac{1}{2} \times 2\frac{3}{4}$.

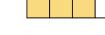
Using the fraction key enter 1 a% 1 a% 2 × 2 a% 3 a% 4

Answer: $4\frac{1}{9}$

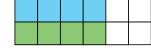
Similarly to divide $3\frac{2}{3} \div 2\frac{1}{2}$:

Enter 3 a% 2 a% 3 ÷ 2 a% 1 a% 2 =

Answer: $1\frac{7}{15}$

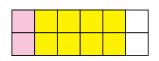

EXERCISE 4.5

Multiplying and dividing fractions and mixed numbers



- 1. Calculate these quantities.

- (i) $\frac{4}{5}$ of 1000 metres (j) $\frac{1}{6}$ of 15 minutes
- 2. Multiply these fractions by selecting the required portion of the squares.
 - What fraction of the rectangle is coloured in?
 - (ii) What fraction of the coloured part is pink?
 - (iii) What fraction of the whole rectangle is pink?
 - (iv) Explain from the diagram the answer to $\frac{1}{2}$ of $\frac{1}{2}$.


- (b) (i) What fraction of the rectangle is coloured in?
 - (ii) What fraction of the coloured part is green?
 - (iii) What fraction of the whole rectangle is green?
 - (iv) Explain from the diagram the answer to $\frac{1}{2}$ of $\frac{2}{3}$.

- (c) (i) What fraction of the rectangle is coloured in?
 - (ii) What fraction of the coloured part is purple?
 - (iii) What fraction of the whole rectangle is purple?
 - (iv) Explain from the diagram the answer to $\frac{1}{3}$ of $\frac{3}{4}$.
 - (v) Explain from the diagram the answer to $\frac{2}{3}$ of $\frac{3}{4}$.

- (d) (i) What fraction of the rectangle is coloured in?
 - (ii) What fraction of the coloured part is yellow?
 - (iii) What fraction of the rectangle is yellow?
 - (iv) Explain from the diagram the answer to $\frac{4}{5}$ of $\frac{5}{6}$.

- Verify your answers to Question 2 by calculating these products on a fraction calculator. 3.
 - (a) $\frac{1}{2} \times \frac{1}{2}$
- (b) $\frac{1}{2} \times \frac{2}{3}$ (c) $\frac{2}{3} \times \frac{3}{4}$
- (d) $\frac{4}{5} \times \frac{5}{6}$

HOW MUCH DO YOU KNOW?

You are nearly at the end of the chapter. Check that you are able to do the following.

Find equivalent fractions (4.1)

• Find fractions equivalent to $\frac{3}{4}$ with denominators 8, 12, 20.

Solution:

$$\frac{3}{4} = \frac{6}{8} = \frac{9}{12} = \frac{15}{20}$$

Write fractions with the same denominator to enable addition and subtraction (4.1)

• Write the fractions $\frac{5}{8}$, $\frac{3}{5}$ with the same denominator.

Solution:

Find the LCM of the denominators 8 and 5 = 40

Change fractions to denominator 40: $\frac{5}{8} \times \frac{5}{5} = \frac{25}{40}$, $\frac{3}{5} \times \frac{8}{8} = \frac{24}{40}$

Reduce a fraction to its simplest equivalent form by cancelling (4.1)

• Cancel $\frac{18}{30}$ to its simplest form.

Solution:

Find the HCF of 18 and 30 = 6. Cancel $\frac{18}{30} = \frac{3 \times \cancel{6}}{5 \times \cancel{6}} = \frac{3}{5}$

Express improper fractions as mixed numbers and vice versa (4.2)

- (a) Change $\frac{23}{4}$ to a mixed number.
 - (b) Change $5\frac{3}{10}$ to an improper fraction.

Solutions:

(a) 4 divides into 23 5 times with remainder 3.


 $\frac{23}{4} = 5\frac{3}{4}$

(b) 5 is $\frac{50}{10}$.

So $5\frac{3}{10} = \frac{50}{10} + \frac{3}{10} = \frac{53}{10}$

Locate fractions and mixed numbers on a number line (4.2)

Locate the numbers $\frac{1}{4}$, $1\frac{3}{4}$, $2\frac{1}{2}$ on a number line.

Express one quantity as a fraction of another (4.2)

• Express 12 kg as a fraction of 28 kg and write the fraction in its simplest terms.

Solution: $\frac{12}{28} = \frac{3 \times 4}{7 \times 4} = \frac{3}{7}$

Note: Both quantities must be in the same units (kg).

CHAPTER 4 DIAGNOSTIC TEST

1. What fraction is the green part of the whole?

(c)

4.1

4.1

4.1

4.2

4.2

4.2

4.3

4.3

4.3

4.4

4.4

4.4

4.5

4.5

4.5

4.5

4.5

2. Cancel these fraction to their lowest terms.

(a) $\frac{6}{8}$

(c)

3. What fraction in its lowest terms is the part of the whole described?

- (a) Luke birdied 12 of the 18 holes on the golf course.
 - (b) Australia won 16 gold medals from a total of 58 medals.
 - (c) Emma spent \$24 of her \$40 birthday gift on a CD.
- 4. Change these mixed numbers to improper fractions.

(c) $5\frac{9}{10}$

5. Change these improper fractions to mixed numbers.

State true or false for each of these. 6.

(a) $2\frac{3}{4} < \frac{9}{4}$

(b) $\frac{4}{13} > \frac{4}{15}$

(c) $4\frac{5}{8} = \frac{44}{8}$

(a) $\frac{1}{4} + \frac{2}{3} =$ 7.

(b) $\frac{3}{4} - \frac{1}{3} =$

(c) $\frac{2}{3} + \frac{5}{8} =$

- 8.
- (a) $\frac{3}{4} + \frac{1}{8} =$

(b) $\frac{5}{6} - \frac{5}{9} =$

- (c) $\frac{7}{12} \frac{5}{18} =$
- Arrange these fractions in ascending order (increasing from smallest to largest).
 - (b) $\frac{5}{8}, \frac{7}{12}, \frac{3}{4}$

(c) $\frac{9}{15}, \frac{7}{10}, \frac{2}{3}$

10. (a) $2\frac{1}{4} + 3\frac{1}{2} =$

(a) $\frac{1}{3}, \frac{1}{4}, \frac{1}{6}$

(b) $3\frac{2}{5} + 1\frac{3}{8} =$

(c) $2\frac{5}{8} + 3\frac{5}{6} =$

11. (a) $5\frac{3}{4} - 2\frac{1}{2} =$

(b) $3\frac{2}{3}-1\frac{1}{4}=$

(c) $4\frac{1}{5} - 2\frac{3}{4} =$

12. (a) $\frac{1}{2}$ of $\frac{1}{3}$ =

(b) $\frac{2}{3} \times \frac{4}{5} =$

(c) $\frac{2}{3} \times \frac{9}{20} =$

13. (a) $1\frac{1}{2} \times \frac{1}{4} =$

(b) $2\frac{1}{2} \times 3\frac{1}{4} =$

(c) $4\frac{1}{5} \times 2\frac{1}{7} =$

14. (a) $\frac{3}{4} \div \frac{1}{4} =$

(b) $\frac{2}{3} \div \frac{5}{8} =$

(c) $\frac{4}{5} \div \frac{8}{15} =$

15. (a) $1\frac{1}{2} \div \frac{1}{4} =$

(b) $2\frac{2}{3} \div 1\frac{1}{4} =$

(c) $5\frac{1}{4} \div 2\frac{5}{8} =$

- **16.** Calculate the required fraction of these quantities.
 - (a) $\frac{3}{4}$ of \$20

- (b) $\frac{4}{5}$ of 3 minutes
- (c) $\frac{7}{8}$ of 1 km

- Calculate the required fraction of these quantities.

(a) $\frac{2}{3}$ of \$60

- (b) $\frac{3}{5}$ of 250 metres
- (c) $\frac{5}{8}$ of 2 dozen eggs

Chapter 7 Algebra

Syllabus

Introduce the concept of variables as a way of representing numbers using letters. (ACMNA175)

Create algebraic expressions and evaluate them by substituting a given value for each variable. (ACMNA176)

Extend and apply the laws and properties of arithmetic to algebraic terms and expressions. (ACMNA177)

KEY SKILLS AND KNOWLEDGE

By the end of this chapter you should be able to:

- Use letters to represent numbers. (7.1)
- Create and evaluate algebraic expressions. (7.2)
- Apply the laws of arithmetic to simplify algebraic expressions. (7.3)
- Use the four arithmetic operations with algebra. (7.4)
- Recognise the role of grouping symbols and the different meanings of expressions. (7.5)
- Connect algebra with the commutative and associative properties of arithmetic. (7.6)
- Interpret statements involving algebraic symbols in other contexts. (7.7)

GETTING STARTED

- 1. In algebra, if x stands for an unknown number, then one more than x is:
 - (A) y

(B) x + 1

(C) x - 1

- (D) Depends on what x is.
- 2. In algebra, one less than *x* is written:
 - (A) w

- (B) x 1
- (C) 0x
- (D) 1 x

- 3. If x = 3 then x + 1 equals:
 - (A) y

(B) 4

(C) 6

(D) 31

- If y = 4 then y = 1 equals: 4.
 - (A) 3

- (B) 3y
- (C) x
- (D) -4
- 5. When a letter stands for a number that could be many different values it is called a:
 - (A) Variable.
- (B) Changeable.
- (C) Alterable.
- (D) Valuable.

- If x = 7 then 2x equals: 6.
 - (A) 14
- (B) 27
- (C) 49
- (D) 14x

- 7. If x = 12 then x + 2 equals:
 - (A) 24
- (B) 6

(C) 6x

(D) None of these.

- 8. If x = 8 then y equals:
 - (A) 9

- (B) x + 1
- (C) 2*x*
- (D) Unknown.

- 9. If x + 1 = 3 then x must be:
 - (A) 2

(B) 4

- (C) 13
- (D) One before y.
- If I had x bottles of lemonade in the fridge and I drank one, then the number of bottles left in the fridge 10. would be:

(A) Still *x*.

(C) It depends how many you had in the first place.

7.7 Using algebraic symbols in other contexts

Sometimes algebra is used to represent numbers in a different way to what we have seen so far. For example, in a computer spreadsheet calculator there are different symbols for operations and formulas are constructed from their position in the grid.

Arithmetic symbol	Spreadsheet symbol	Example
+	+	3+4
-	-	4-3
×	*	4*3
÷	/	20/5
2 ³	٨	2^3

Spreadsheets

In a computer spreadsheet the value of a variable is found by referring to a cell in the spreadsheet. The cell has a name according to the column and row it belongs to.

		Α	В	С	D	
	1	Length	Breadth	Perimeter	Area	
	2	4	7	= 2*(A2 + B2)	= A2*B2	
Γ	3	\	\		1	
		7) / (ce	12 refers to the let Il with value 4. B2 r o the breadth cell v value 7.	efers\	doesn't 2. The	n this case mean A times result is 28, ot 4AB.

Computer programming

The instruction	X3 = Y3 + 5 means:		Y3
	Fetch the value of Y3.	(23)	23
	Add 5 to it.	(28)	23
	Store the result in X3.		Х3
The instruction	Y3 = Y3 + 5 means:		28
	Fetch the value of Y3.	(23)	
	Add 5 to it.	(28)	Y3
	Store this in Y3. (Note t	he original value of Y3 is lost.)	28

This statement would be meaningless in the context of ordinary algebra. It would say that there is some number X when multiplied by 3 (X3) and added to 5 (X3+5) gives the same number as when you multiplied it by 3 (X3), i.e. adding the 5 makes no difference.

Class property languages

Modern computer languages have variables that are subclasses of other variables.

For example, TABLEA may have columns X and Y while TABLEB also has columns X and Y. To refer to the different Xs and Ys they are separated from their table name by a dot. This allows the programmer to use the same variables X and Y in different contexts without getting them mixed up.

	Table A		Tab	le B
	Х У		X	Y
1	7	11	22	55
2	8	12	23	56
3	9	13	24	57

So TABLEA.X(3) + TABLEB.X(3) = 9 + 24 = 33

EXERCISE 7.7

Using algebraic symbols in other contexts

1. Calculate the result in column D when these values and formulas are placed in a spreadsheet. Note that the normal order of operations applies, and brackets take precedence with powers being done before multiplication and division while addition and subtraction are last.

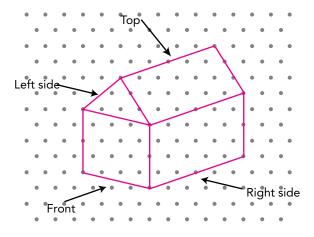
	Α	В	С	D
1	First	Second	Third	Result
2	4	8	5	=A2*B2*C2
3	5	4	12	=A3*C3/B3
4	6	5	4	=B2^2-A4*C4
5	9	8	3	=A5/C5*B5
6	3	9	7	=(A6+C6)*B6
7	1	0	9	=(C7+B6-A5)*B7

- **2.** Calculate the final values of x and y given the initial values of x = 5 and y = 6.
 - (a) $y = x^2 + 10$
 - (b) $y = x^2 + y^2$
 - (c) x = x * y + x
 - (d) $x = x^*(x + y)$
 - (e) y = (2*x + 3*y)/7
- **3.** Write a formula for the spreadsheet that will calculate the area of a triangle with given base and height. Place the formula in cell C2.

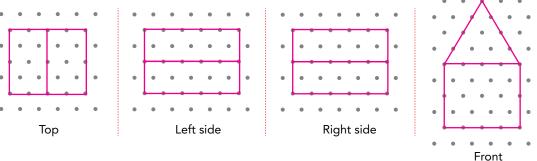
	Α	В	С
1	Base	Height	Area of triangle
2	4	7	
3			

- *Hint 1:* All spreadsheet formulas begin with '='.
- Hint 2: The area of a rectangle is found by multiplying height by width.
- *Hint 3:* Since a triangle may be considered to be half a rectangle, the area of a triangle is found by multiplying the height by the width (base) and halving the result.
- **4.** Work out the values of these variables from the given table of class variables.

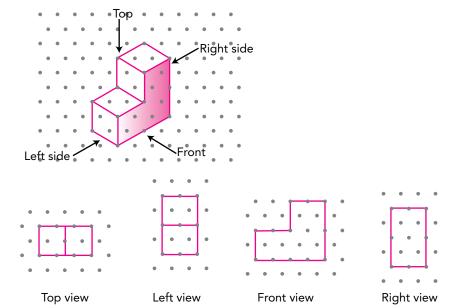
	Rectangle		Triangle	
	Height	Width	Height	Width
1	6.5	4	9.5	12
2	7.5	6	10.5	14
3	8.5	8	11.5	16


- (a) Rectangle.Height(1)*Rectangle.Width(1)
- (b) Rectangle.Height(3)*Rectangle.Width(3)
- (c) Triangle.Height(2)*Triangle.Width(2)/2
- (d) Triangle.Height(3)*Triangle.Width(3)/2
- (e) (Rectangle.Height(1)+Rectangle.Width(1))*2

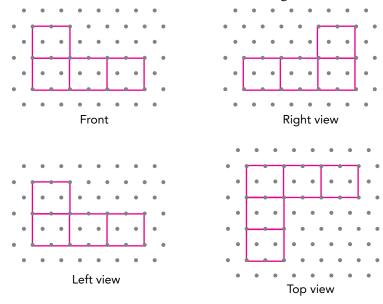
13.4 Drawing solids from different perspectives


As we approach someone's house we see the **front view**. If we look at the house from the neighbour's view it would be the **side view** and if we approached the house from the rear it would be the **back view**.

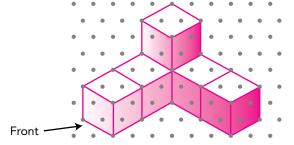
An architect's floor plan of a house could be considered as the **top view** of the house (i.e. looking at the house from above). We can put all the views together to describe fully what the solid looks like.


Example 1: Draw the top, left side, right side and front views of this house.

Solution:



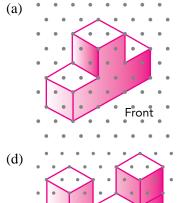
Example 2: Draw the top, the two sides and front views of this solid.

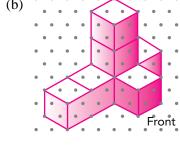


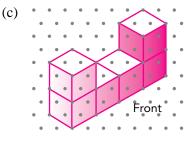
Solution:

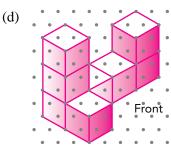
Example 3: Given the various views of a solid, draw a diagram of the solid on isometric paper.

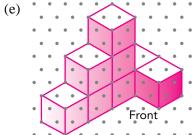
Solution:

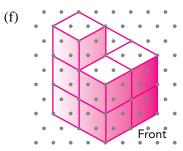


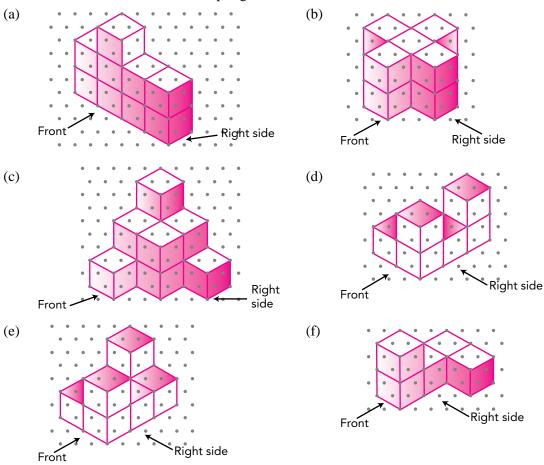

EXERCISE 13.4

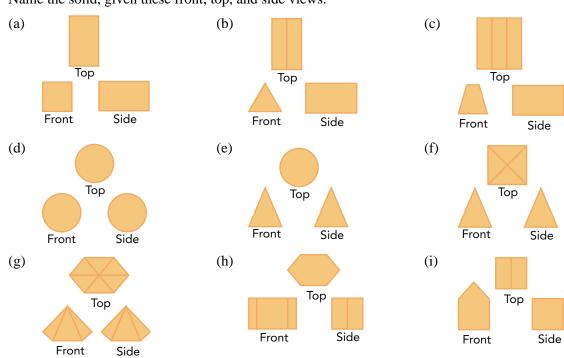

Drawing solids from different perspectives




For each of the solids shown, first build the shape using centicubes and then draw the diagrams from 1. the front, top, right and left views.







2. Given these solids draw the front, top, right and left views.

- **3.** Draw the top and side views for:
 - (a) A cone.

- (b) A sphere.
- **4.** Name the solid, given these front, top, and side views.

