
SKILLS THROUGH SCIENCE

LITERACY • NUMERACY • SCIENCE

Brian Shadwick

© Science Press 2020 First published 2020

Science Press Unit 7, 23-31 Bowden Street Alexandria NSW 2015 Australia Tel: +61 2 9020 1840 Fax: +61 2 9020 1842 sales@sciencepress.com.au www.sciencepress.com.au All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Science Press. ABN 98 000 073 861

CONTENTS

Intro	duction	1	28	Changing Data Into Other Forms	44
1	Branches Of Science	2	29	Reading a Graph 1	45
2	Safety In a Laboratory	4	30	Reading a Graph 2	46
3	Measurement In Science – Comprehension	6	31	Reading a Graph 3	47
4	Match Up! – Comprehension	8	32	Reading a Graph 4	48
5	Reading Scales – Temperature	9	33	Processing and Analysing Results 1	49
6	Reading Scales	10	34	Processing and Analysing Results 2	50
7	Why Are Corners So Hot?	12	35	Analysing an Experiment	51
8	Reading Scales – Length	13	36	Logical Thinking Puzzles 1	52
9	Reading Scales – Volume	14	37	Logical Thinking Puzzles 2	53
10	Reading Scales – A Class Experiment	15	38	Qualitative and Quantitative Statements	55
11	What Is An Astronomical Unit?	16	39	Making Inferences 1	56
12	World's Tallest Buildings –	17	40	Making Inferences 2	57
12	Scale Diagrams	17	41	Making Inferences 3	58
13	Converting Units Of Measurement	18	42	Scale Diagrams	61
14	Why Are Maths Books Sad? – Converting Units	19	43	Ideas About Classification – Close Sentences	64
15	What Is Science? –	20	44	Developing Classification Schemes	66
	Matching Sentence Halves		45	Designing Dichotomous Keys	67
16	The Scientific Method – Sequencing Statements	22	46	Classification Of Living Things – Comprehension	68
17	Observation Or Hypothesis?	24	47	Phylum Echinodermata –	70
18	Pasteur and Pasteurisation	27		Pictorial Comprehension	
19	Experimental Variables	28	48	Why Do We Need To Classify? –	72
20	Designing Experiments	30	40	Comprehension	7.4
21	Accuracy In Measurements	32	49	Classifying the Vertebrates – Comprehension	74
22	Reliability Of Measurements	34	50	Facts About Chains And Webs –	76
23	Validity Of Experiments	36		Definition Of Terms	
24	Terms Used In Experiments –	38	51	Food Chain, Pyramid, Web Crossword	78
	Research		52	Analysing a Food Web	80
25	Identifying Scientific Equipment	40	53	Food Chain and Pyramid	82
26 27	Using a Microscope – Comprehension The Bunsen Burner – Comprehension	41 42	54	Feral Animals In Australia – Comprehension	84

55	Mixtures and Solutions – Definition Of Terms	86	84	Other Forms Of Energy 2 – Comprehension	136
56	Qualitative and Quantitative Concentrations	87	85	Electromagnetic Energy – Comprehension	138
57	Making Inferences	88	86	Classifying Energy - Flow Diagram	140
58	Solutions Crossword	90	87	Energy Throughout Time –	141
59	Analysing an Experiment	92		Analysing a Graph	
60	Applying Two Theories	94	88	Analysing a Heat Energy Experiment 1	142
61	Concentrations Of Solutions – Calculations	95	89	Analysing a Heat Energy Experiment 2	143
62	The States Of Matter	96	90	Analysing a Heat Energy Experiment 3	144
63	Predicting Results Of Simple	98	91	Energy Changes – Comprehension	146
	Experiments		92	The Law Of Conservation Of Energy	148
64	Water Cycle - Research Assignment	100	93	Applying Ideas About Heat Transfer	150
65	Saving Water – Interpreting a Bar Chart	101	94	The Earth Is Tilted! – Analysis	152
66	The Kinetic Theory Of Matter – Language Connections	102	95	What Season Is That? – Analysis	153
67	Analysing an Experiment	105	96	The Solar System	154
68	Matter and the Kinetic Theory	106	97	Facts About the Solar System – Research	155
69	Applying the Kinetic Theory	108	00		150
70	Changes Of State – Comprehension	110	98	Relative Sizes Of the Planets – Scale Diagrams	156
71	Changes Of State - Close Diagram	112	99	Mass, Weight and Gravity	158
72	Properties Of Matter Crossword	114	100	Your Weight On Each Planet –	160
73	Atoms and Molecules – Comprehension	116		Calculating and Graphing	
74	Elements – Transforming Data	118	101	Relative Masses –	162
75	More About Atoms – Comprehension	120		Calculating and Graphing	
76	Elements and Their Symbols	122	102	Eclipses – Analysis	164
77	Applying Atomic Structure Theory 1	124	103	Phases In the Solar System – Analysis	166
78	Applying Atomic Structure Theory 2	126	104		168
79	Heat Conduction - Comprehension	128	40=	Analysing a Diagram	470
80	Heat Convection - Comprehension	130	105	Types Of Forces	170
81	Heat Radiation - Comprehension	132	Ansv		172
82	Designing an Experiment	133		ds to Watch	214
83	Other Forms Of Energy 1 – Comprehension	134	Perio Inde	odic Table x	215 216

In this bumper book packed full of fun science activities, you'll:

- O Develop some really useful basic skills and knowledge that will help you in everyday life.
- O Find your confidence growing as you juggle numbers, new words and science ideas.
- O Discover interesting new facts through learning how, why and when to do things.
- O Tackle new information and react critically to it because of all the new things you have learnt.
- O Be able to check your progress and understanding with the detailed answers at the back of the book.

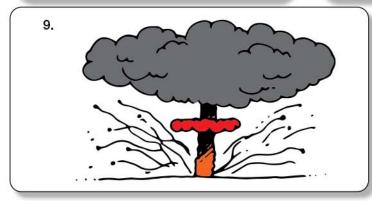
1	2							
2	9							
3			3					
4	21							
5			10					
6		7						
7							15	
8	-		4				<u>, </u>	
9			24					
	-						18	
10		10						
11		16						
12				11				
13							19	
14						22		
15		23						
16				12				
17				14				
18			6	1				
19						17		
							20	
20	1							
21			-		7	13		
22					8			
23					3		OF.	
24							25	
25				5				

EXERCISE


Safety In a Laboratory

2

The 10 cartoons below each illustrate a laboratory safety rule. Your task is to identify the rule each refers to and to write the rule in the appropriate space in the table.



Cartoon	Laboratory rule illustrated by cartoon
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

EXERCISE

Measurement In Science - Comprehension

Read the information below then answer the questions which follow it.

One of the ways in which science differs from other subjects is that many of the observations we make involve measuring something. We might measure the length of something, a volume, a time, mass, temperature, electrical current or voltage or the force acting on something, or many other quantities that you will meet in your science studies.

To measure something, we need two things:

- 1. A system of units.
- 2. A measuring instrument.

The units we use tell others what the measurement is. It might be a distance (metres or kilometres) or a volume (litres) or a period of time (seconds). Each different quantity we measure will have its own system of units, for example as follows.

The system we use for distance includes:

The kilometre (km) Where 1 km = 1000 mThe metre (m) 1 m = 100 cmThe centimetre (cm) 1 cm = 10 mm

The millimetre (mm)

These units, and all the others we will use, are based on the **metric system of measurement**, derived in France in 1795. The metric system is used internationally and is sometimes referred to as the SI (Système Internationale) system of units.

There are many advantages of having a universal system throughout the world. It makes communicating in all areas involving measurement, including engineering, architecture, medicine, banking, buying and selling much easier to understand.

Another important idea about a system of units is having a standard. A standard has three main properties. It is:

- Convenient to use.
- Easily reproduced.
- Widely known.

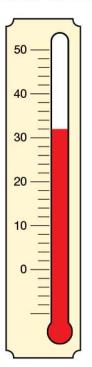
The standard metric units used for mass, length and time, the three fundamental quantities in science, from which all others are derived are shown in the table below.

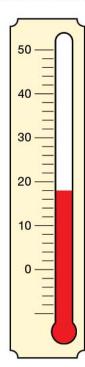
Fundamental quantity	Standard metric unit	Symbol for unit
Mass	kilogram	kg
Length	metre	m
Time	second	s

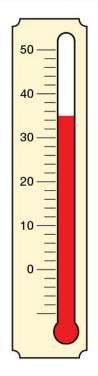
An example of a derived unit is the unit for speed – how fast something is moving. It is the metre per second, usually written as m s⁻¹.

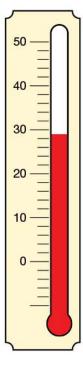
QUESTIONS

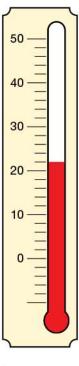
(a)	Science is different from other subjects .	it often	involves making
(b)	To measure something we need a	of	and a
	instrument.		
(c)	The system of units we use is the	system.	
(d)	The units for mass, length and	in the	system are
	,	and seconds respectively	<i>1</i> .
(e)	The symbols we use for these units, in t	he same order are	, .
Wh	at are the three characteristics of a stand	ard unit?	
W/h	at is the main advantage of having a stan-	dard, or universal system of	measurement?

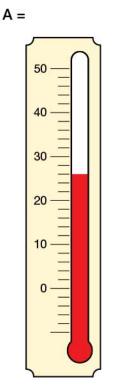

Complete the following table.

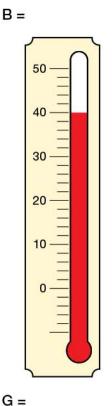

To change	into	× or ÷	by
kilometres	metres		
metres	centimetres		
centimetres	millimetres		
	centimetres	÷	10
millimetres			1000
centimetres		2	100
	kilometres	÷	1000
	kilometres	÷	1 000 000
litres	millilitres		
	litres	÷	1000
gram	kilogram		
milligram	gram		
gram		×	1000
kilogram		×	1000

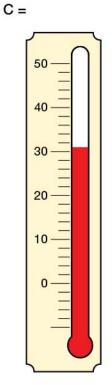

EXERCISE

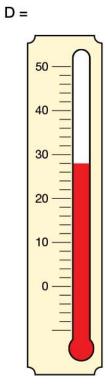

Reading Scales - Temperature

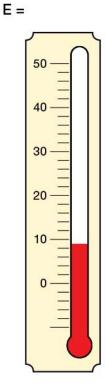

Determine the reading on each of the thermometers shown below to the closest degree.











H =

1 =

ISBN 978-0-85583-8195

F=

J=

Branches Of Science

- 1. Heart
- 2. Physics
- 3. Pharmacy
- 4. Seismology
- 5. Plants
- 6. Nerves
- 7. Chemistry
- 8. Lithology
- 9. Radiology
- **10.** Hydrology
- 11. Botany
- 12. Ecology
- **13.** Virology
- 14. Climatology
- **15.** Vulcanology
- **16.** Minerals
- **17.** Skin
- 18. Zoology
- 19. Cosmology
- 20. Biology
- 21. Weather
- 22. Entomology
- 23. Cells
- 24. Geology
- 25. Birds

Final question: What does paleontology study? **Answer:** Paleontology is the study of fossils.

2 Safety In a Laboratory

- Don't taste or drink in the laboratory it might be poisonous.
- **2.** Clean up any spilt chemical immediately with the cloth provided by the teacher.
- Watch where you walk about so you do not bump into others.
- 4. Clean all apparatus before putting it away.
- If any chemicals spill anywhere, notify the teacher immediately.
- **6.** Do not directly smell chemicals or gases given off during reactions.
- 7. Never leave reagent bottles unstoppered.
- 8. Do not touch chemicals directly.
- 9. Do not mix unauthorised chemicals they may react in a bad way!
- **10.** Don't run in the laboratory walk sensibly.

3 Measurement In Science – Comprehension

- 1. (a) because, measurements
 - (b) system, units, measuring
 - (c) metric
 - (d) time, metric, kilogram, metre
 - (e) kg, m, s
- 2. Convenient to use.

Easily reproduced.

Widely known.

Communication and understanding across the world in all areas of interaction are easier.